Every item of a pipeline list is one of the following data transformations class. And if you want to add a custom data transformation class, the tutorial :doc:`Custom Data Pipelines </tutorials/data_pipeline>` will help you.
..contents:: mmcls.datasets.pipelines
:depth:2
:local:
:backlinks:top
..currentmodule:: mmcls.datasets.pipelines
Loading
=======
LoadImageFromFile
---------------------
..autoclass:: LoadImageFromFile
Preprocessing and Augmentation
==============================
CenterCrop
---------------------
..autoclass:: CenterCrop
Lighting
---------------------
..autoclass:: Lighting
Normalize
---------------------
..autoclass:: Normalize
Pad
---------------------
..autoclass:: Pad
Resize
---------------------
..autoclass:: Resize
RandomCrop
---------------------
..autoclass:: RandomCrop
RandomErasing
---------------------
..autoclass:: RandomErasing
RandomFlip
---------------------
..autoclass:: RandomFlip
RandomGrayscale
---------------------
..autoclass:: RandomGrayscale
RandomResizedCrop
---------------------
..autoclass:: RandomResizedCrop
ColorJitter
---------------------
..autoclass:: ColorJitter
Composed Augmentation
---------------------
Composed augmentation is a kind of methods which compose a series of data
augmentation transformations, such as ``AutoAugment`` and ``RandAugment``.
..autoclass:: AutoAugment
..autoclass:: RandAugment
In composed augmentation, we need to specify several data transformations or
several groups of data transformations (The ``policies`` argument) as the
random sampling space. These data transformations are chosen from the below
table. In addition, we provide some preset policies in `this folder`_.