169 lines
5.2 KiB
Python
169 lines
5.2 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
import os
|
||
|
import tempfile
|
||
|
|
||
|
import pytest
|
||
|
import torch
|
||
|
from mmengine.runner import load_checkpoint, save_checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn.modules import GroupNorm
|
||
|
from torch.nn.modules.batchnorm import _BatchNorm
|
||
|
|
||
|
from mmcls.models.backbones import levit
|
||
|
from mmcls.models.backbones.levit import Attention, AttentionSubsample, LeViT
|
||
|
|
||
|
|
||
|
def check_norm_state(modules, train_state):
|
||
|
"""Check if norm layer is in correct train state."""
|
||
|
for mod in modules:
|
||
|
if isinstance(mod, _BatchNorm):
|
||
|
if mod.training != train_state:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
|
||
|
def is_norm(modules):
|
||
|
"""Check if is one of the norms."""
|
||
|
if isinstance(modules, (GroupNorm, _BatchNorm)):
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
def is_levit_block(modules):
|
||
|
if isinstance(modules, (AttentionSubsample, Attention)):
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
def test_levit_attention():
|
||
|
block = Attention(128, 16, 4, 2, act_cfg=dict(type='HSwish'))
|
||
|
block.eval()
|
||
|
x = torch.randn(1, 196, 128)
|
||
|
y = block(x)
|
||
|
assert y.shape == x.shape
|
||
|
assert hasattr(block, 'ab')
|
||
|
assert block.key_dim == 16
|
||
|
assert block.attn_ratio == 2
|
||
|
assert block.num_heads == 4
|
||
|
assert block.qkv.linear.in_features == 128
|
||
|
|
||
|
|
||
|
def test_levit():
|
||
|
with pytest.raises(TypeError):
|
||
|
# arch must be str or dict
|
||
|
LeViT(arch=[4, 6, 16, 1])
|
||
|
|
||
|
with pytest.raises(AssertionError):
|
||
|
# arch must in arch_settings
|
||
|
LeViT(arch='512')
|
||
|
|
||
|
with pytest.raises(AssertionError):
|
||
|
arch = dict(num_blocks=[2, 4, 14, 1])
|
||
|
LeViT(arch=arch)
|
||
|
|
||
|
# Test out_indices not type of int or Sequence
|
||
|
with pytest.raises(TypeError):
|
||
|
LeViT('128s', out_indices=dict())
|
||
|
|
||
|
# Test max(out_indices) < len(arch['num_blocks'])
|
||
|
with pytest.raises(AssertionError):
|
||
|
LeViT('128s', out_indices=(3, ))
|
||
|
|
||
|
model = LeViT('128s', out_indices=(-1, ))
|
||
|
assert model.out_indices == [2]
|
||
|
|
||
|
model = LeViT(arch='256', drop_path_rate=0.1)
|
||
|
model.eval()
|
||
|
assert model.key_dims == [32, 32, 32]
|
||
|
assert model.embed_dims == [256, 384, 512]
|
||
|
assert model.num_heads == [4, 6, 8]
|
||
|
assert model.depths == [4, 4, 4]
|
||
|
assert model.drop_path_rate == 0.1
|
||
|
assert isinstance(model.stages[0][0].block.qkv, levit.LinearBatchNorm)
|
||
|
assert isinstance(model.patch_embed.patch_embed[0],
|
||
|
levit.ConvolutionBatchNorm)
|
||
|
|
||
|
model = LeViT(
|
||
|
arch='128s',
|
||
|
hybrid_backbone=lambda embed_dims: nn.Conv2d(
|
||
|
embed_dims, embed_dims, kernel_size=2))
|
||
|
model.eval()
|
||
|
assert isinstance(model.patch_embed, nn.Conv2d)
|
||
|
|
||
|
# Test eval of "train" mode and "deploy" mode
|
||
|
model = LeViT(arch='128s', deploy=True)
|
||
|
model.eval()
|
||
|
assert not isinstance(model.stages[0][0].block.qkv, levit.LinearBatchNorm)
|
||
|
assert not isinstance(model.patch_embed.patch_embed[0],
|
||
|
levit.ConvolutionBatchNorm)
|
||
|
assert isinstance(model.stages[0][0].block.qkv, nn.Linear)
|
||
|
assert isinstance(model.patch_embed.patch_embed[0], nn.Conv2d)
|
||
|
|
||
|
# Test LeViT forward with layer 2 forward
|
||
|
model = LeViT('128s', out_indices=(2, ))
|
||
|
model.init_weights()
|
||
|
model.train()
|
||
|
|
||
|
for m in model.modules():
|
||
|
if is_norm(m):
|
||
|
assert isinstance(m, _BatchNorm)
|
||
|
|
||
|
imgs = torch.randn(1, 3, 224, 224)
|
||
|
feat = model(imgs)
|
||
|
assert isinstance(feat, tuple)
|
||
|
assert len(feat) == 1
|
||
|
assert isinstance(feat[0], torch.Tensor)
|
||
|
assert feat[0].shape == torch.Size((1, 384, 4, 4))
|
||
|
|
||
|
# Test LeViT forward
|
||
|
arch_settings = {
|
||
|
'128s': dict(out_channels=[128, 256, 384]),
|
||
|
'128': dict(out_channels=[128, 256, 384]),
|
||
|
'192': dict(out_channels=[192, 288, 384]),
|
||
|
'256': dict(out_channels=[256, 384, 512]),
|
||
|
'384': dict(out_channels=[384, 512, 768])
|
||
|
}
|
||
|
|
||
|
choose_models = ['128s', '192', '256', '384']
|
||
|
# Test LeViT model forward
|
||
|
for model_name, model_arch in arch_settings.items():
|
||
|
if model_name not in choose_models:
|
||
|
continue
|
||
|
model = LeViT(model_name, out_indices=(0, 1, 2))
|
||
|
model.init_weights()
|
||
|
|
||
|
# Test Norm
|
||
|
for m in model.modules():
|
||
|
if is_norm(m):
|
||
|
assert isinstance(m, _BatchNorm)
|
||
|
|
||
|
model.train()
|
||
|
imgs = torch.randn(1, 3, 224, 224)
|
||
|
feat = model(imgs)
|
||
|
assert feat[0].shape == torch.Size(
|
||
|
(1, model_arch['out_channels'][0], 14, 14))
|
||
|
assert feat[1].shape == torch.Size(
|
||
|
(1, model_arch['out_channels'][1], 7, 7))
|
||
|
assert feat[2].shape == torch.Size(
|
||
|
(1, model_arch['out_channels'][2], 4, 4))
|
||
|
|
||
|
|
||
|
def test_load_deploy_LeViT():
|
||
|
# Test output before and load from deploy checkpoint
|
||
|
model = LeViT('128s', out_indices=(0, 1, 2))
|
||
|
inputs = torch.randn((1, 3, 224, 224))
|
||
|
tmpdir = tempfile.gettempdir()
|
||
|
ckpt_path = os.path.join(tmpdir, 'ckpt.pth')
|
||
|
model.switch_to_deploy()
|
||
|
model.eval()
|
||
|
outputs = model(inputs)
|
||
|
|
||
|
model_deploy = LeViT('128s', out_indices=(0, 1, 2), deploy=True)
|
||
|
save_checkpoint(model.state_dict(), ckpt_path)
|
||
|
load_checkpoint(model_deploy, ckpt_path)
|
||
|
|
||
|
outputs_load = model_deploy(inputs)
|
||
|
for feat, feat_load in zip(outputs, outputs_load):
|
||
|
assert torch.allclose(feat, feat_load)
|
||
|
os.remove(ckpt_path)
|