mmpretrain/tests/test_models/test_backbones/test_levit.py

169 lines
5.2 KiB
Python
Raw Normal View History

[Feature] Support LeViT backbone. (#1238) * 网络搭建完成、能正常推理 * 网络搭建完成、能正常推理 * 网络搭建完成、能正常推理 * 添加了模型转换未验证,配置文件 但有无法运行 * 模型转换、结构验证完成,可以推理出正确答案 * 推理精度与原论文一致 已完成转化 * 三个方法改为class 暂存 * 完成推理精度对齐 误差0.04 * 暂时使用的levit2mmcls * 训练跑通,训练相关参数未对齐 * '训练相关参数对齐'参数' * '修复训练时验证导致模型结构改变无法复原问题' * '修复训练时验证导致模型结构改变无法复原问题' * '添加mixup和labelsmooth' * '配置文件补齐' * 添加模型转换 * 添加meta文件 * 添加meta文件 * 删除demo.py测试文件 * 添加模型README文件 * docs文件回滚 * model-index删除末行空格 * 更新模型metafile * 更新metafile * 更新metafile * 更新README和metafile * 更新模型README * 更新模型metafile * Delete the model class and get_LeViT_model methods in the mmcls.models.backone.levit file * Change the class name to Google Code Style * use arch to provide default architectures * use nn.Conv2d * mmcv.cnn.fuse_conv_bn * modify some details * remove down_ops from the architectures. * remove init_weight function * Modify ambiguous variable names * Change the drop_path in config to drop_path_rate * Add unit test * remove train function * add unit test * modify nn.norm1d to build_norm_layer * update metafile and readme * Update configs and LeViT implementations. * Update README. * Add docstring and update unit tests. * Revert irrelative modification. * Fix unit tests * minor fix Co-authored-by: mzr1996 <mzr1996@163.com>
2023-01-17 17:43:42 +08:00
# Copyright (c) OpenMMLab. All rights reserved.
import os
import tempfile
import pytest
import torch
from mmengine.runner import load_checkpoint, save_checkpoint
from torch import nn
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import levit
from mmcls.models.backbones.levit import Attention, AttentionSubsample, LeViT
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def is_levit_block(modules):
if isinstance(modules, (AttentionSubsample, Attention)):
return True
return False
def test_levit_attention():
block = Attention(128, 16, 4, 2, act_cfg=dict(type='HSwish'))
block.eval()
x = torch.randn(1, 196, 128)
y = block(x)
assert y.shape == x.shape
assert hasattr(block, 'ab')
assert block.key_dim == 16
assert block.attn_ratio == 2
assert block.num_heads == 4
assert block.qkv.linear.in_features == 128
def test_levit():
with pytest.raises(TypeError):
# arch must be str or dict
LeViT(arch=[4, 6, 16, 1])
with pytest.raises(AssertionError):
# arch must in arch_settings
LeViT(arch='512')
with pytest.raises(AssertionError):
arch = dict(num_blocks=[2, 4, 14, 1])
LeViT(arch=arch)
# Test out_indices not type of int or Sequence
with pytest.raises(TypeError):
LeViT('128s', out_indices=dict())
# Test max(out_indices) < len(arch['num_blocks'])
with pytest.raises(AssertionError):
LeViT('128s', out_indices=(3, ))
model = LeViT('128s', out_indices=(-1, ))
assert model.out_indices == [2]
model = LeViT(arch='256', drop_path_rate=0.1)
model.eval()
assert model.key_dims == [32, 32, 32]
assert model.embed_dims == [256, 384, 512]
assert model.num_heads == [4, 6, 8]
assert model.depths == [4, 4, 4]
assert model.drop_path_rate == 0.1
assert isinstance(model.stages[0][0].block.qkv, levit.LinearBatchNorm)
assert isinstance(model.patch_embed.patch_embed[0],
levit.ConvolutionBatchNorm)
model = LeViT(
arch='128s',
hybrid_backbone=lambda embed_dims: nn.Conv2d(
embed_dims, embed_dims, kernel_size=2))
model.eval()
assert isinstance(model.patch_embed, nn.Conv2d)
# Test eval of "train" mode and "deploy" mode
model = LeViT(arch='128s', deploy=True)
model.eval()
assert not isinstance(model.stages[0][0].block.qkv, levit.LinearBatchNorm)
assert not isinstance(model.patch_embed.patch_embed[0],
levit.ConvolutionBatchNorm)
assert isinstance(model.stages[0][0].block.qkv, nn.Linear)
assert isinstance(model.patch_embed.patch_embed[0], nn.Conv2d)
# Test LeViT forward with layer 2 forward
model = LeViT('128s', out_indices=(2, ))
model.init_weights()
model.train()
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert isinstance(feat, tuple)
assert len(feat) == 1
assert isinstance(feat[0], torch.Tensor)
assert feat[0].shape == torch.Size((1, 384, 4, 4))
# Test LeViT forward
arch_settings = {
'128s': dict(out_channels=[128, 256, 384]),
'128': dict(out_channels=[128, 256, 384]),
'192': dict(out_channels=[192, 288, 384]),
'256': dict(out_channels=[256, 384, 512]),
'384': dict(out_channels=[384, 512, 768])
}
choose_models = ['128s', '192', '256', '384']
# Test LeViT model forward
for model_name, model_arch in arch_settings.items():
if model_name not in choose_models:
continue
model = LeViT(model_name, out_indices=(0, 1, 2))
model.init_weights()
# Test Norm
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[0].shape == torch.Size(
(1, model_arch['out_channels'][0], 14, 14))
assert feat[1].shape == torch.Size(
(1, model_arch['out_channels'][1], 7, 7))
assert feat[2].shape == torch.Size(
(1, model_arch['out_channels'][2], 4, 4))
def test_load_deploy_LeViT():
# Test output before and load from deploy checkpoint
model = LeViT('128s', out_indices=(0, 1, 2))
inputs = torch.randn((1, 3, 224, 224))
tmpdir = tempfile.gettempdir()
ckpt_path = os.path.join(tmpdir, 'ckpt.pth')
model.switch_to_deploy()
model.eval()
outputs = model(inputs)
model_deploy = LeViT('128s', out_indices=(0, 1, 2), deploy=True)
save_checkpoint(model.state_dict(), ckpt_path)
load_checkpoint(model_deploy, ckpt_path)
outputs_load = model_deploy(inputs)
for feat, feat_load in zip(outputs, outputs_load):
assert torch.allclose(feat, feat_load)
os.remove(ckpt_path)