85 lines
2.7 KiB
Markdown
85 lines
2.7 KiB
Markdown
|
# Confusion Matrix
|
|||
|
|
|||
|
MMPretrain provides `tools/analysis_tools/confusion_matrix.py` tool to calculate and visualize the confusion matrix. For an introduction to the confusion matrix, see [link](https://en.wikipedia.org/wiki/Confusion_matrix).
|
|||
|
|
|||
|
## Command-line Usage
|
|||
|
|
|||
|
**Command**:
|
|||
|
|
|||
|
```shell
|
|||
|
python tools/analysis_tools/confusion_matrix.py \
|
|||
|
${CONFIG_FILE} \
|
|||
|
${CHECKPOINT} \
|
|||
|
[--show] \
|
|||
|
[--show-path] \
|
|||
|
[--include-values] \
|
|||
|
[--cmap ${CMAP}] \
|
|||
|
[--cfg-options ${CFG-OPTIONS}]
|
|||
|
```
|
|||
|
|
|||
|
**Description of all arguments**:
|
|||
|
|
|||
|
- `config`: The path of the model config file.
|
|||
|
- `checkpoint`: The path of the checkpoint.
|
|||
|
- `--show`: If or not to show the matplotlib visualization result of the confusion matrix, the default is `False`.
|
|||
|
- `--show-path`: If `show` is True, the path where the results are saved is visualized.
|
|||
|
- `--include-values`: Whether to add values to the visualization results.
|
|||
|
- `--cmap`: The color map used for visualization results, `cmap`, which defaults to `viridis`.
|
|||
|
|
|||
|
* `--cfg-options`: Modifications to the configuration file, refer to [Learn about Configs](../user_guides/config.md).
|
|||
|
|
|||
|
**Examples of use**:
|
|||
|
|
|||
|
```shell
|
|||
|
python tools/analysis_tools/confusion_matrix.py \
|
|||
|
configs/resnet/resnet50_8xb16_cifar10.py \
|
|||
|
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20210528-f54bfad9.pth \
|
|||
|
--show
|
|||
|
```
|
|||
|
|
|||
|
**output image**:
|
|||
|
|
|||
|
<div align=center><img src="https://user-images.githubusercontent.com/26739999/210298124-49ae00f7-c8fd-488a-a4da-58c285e9c1f1.png" style=" width: auto; height: 40%; "></div>
|
|||
|
|
|||
|
## **Basic Usage**
|
|||
|
|
|||
|
```python
|
|||
|
>>> import torch
|
|||
|
>>> from mmpretrain.evaluation import ConfusionMatrix
|
|||
|
>>> y_pred = [0, 1, 1, 3]
|
|||
|
>>> y_true = [0, 2, 1, 3]
|
|||
|
>>> ConfusionMatrix.calculate(y_pred, y_true, num_classes=4)
|
|||
|
tensor([[1, 0, 0, 0],
|
|||
|
[0, 1, 0, 0],
|
|||
|
[0, 1, 0, 0],
|
|||
|
[0, 0, 0, 1]])
|
|||
|
>>> # plot the confusion matrix
|
|||
|
>>> import matplotlib.pyplot as plt
|
|||
|
>>> y_score = torch.rand((1000, 10))
|
|||
|
>>> y_true = torch.randint(10, (1000, ))
|
|||
|
>>> matrix = ConfusionMatrix.calculate(y_score, y_true)
|
|||
|
>>> ConfusionMatrix().plot(matrix)
|
|||
|
>>> plt.show()
|
|||
|
```
|
|||
|
|
|||
|
## **Use with Evalutor**
|
|||
|
|
|||
|
```python
|
|||
|
>>> import torch
|
|||
|
>>> from mmpretrain.evaluation import ConfusionMatrix
|
|||
|
>>> from mmpretrain.structures import DataSample
|
|||
|
>>> from mmengine.evaluator import Evaluator
|
|||
|
>>> data_samples = [
|
|||
|
... DataSample().set_gt_label(i%5).set_pred_score(torch.rand(5))
|
|||
|
... for i in range(1000)
|
|||
|
... ]
|
|||
|
>>> evaluator = Evaluator(metrics=ConfusionMatrix())
|
|||
|
>>> evaluator.process(data_samples)
|
|||
|
>>> evaluator.evaluate(1000)
|
|||
|
{'confusion_matrix/result': tensor([[37, 37, 48, 43, 35],
|
|||
|
[35, 51, 32, 46, 36],
|
|||
|
[45, 28, 39, 42, 46],
|
|||
|
[42, 40, 40, 35, 43],
|
|||
|
[40, 39, 41, 37, 43]])}
|
|||
|
```
|