mmpretrain/mmcls/models/heads/multi_label_linear_head.py

60 lines
1.9 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
import torch.nn.functional as F
from ..builder import HEADS
from .multi_label_head import MultiLabelClsHead
@HEADS.register_module()
class MultiLabelLinearClsHead(MultiLabelClsHead):
"""Linear classification head for multilabel task.
Args:
num_classes (int): Number of categories.
in_channels (int): Number of channels in the input feature map.
loss (dict): Config of classification loss.
init_cfg (dict | optional): The extra init config of layers.
Defaults to use dict(type='Normal', layer='Linear', std=0.01).
"""
def __init__(self,
num_classes,
in_channels,
loss=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='mean',
loss_weight=1.0),
init_cfg=dict(type='Normal', layer='Linear', std=0.01)):
super(MultiLabelLinearClsHead, self).__init__(
loss=loss, init_cfg=init_cfg)
if num_classes <= 0:
raise ValueError(
f'num_classes={num_classes} must be a positive integer')
self.in_channels = in_channels
self.num_classes = num_classes
self.fc = nn.Linear(self.in_channels, self.num_classes)
def forward_train(self, x, gt_label):
if isinstance(x, tuple):
x = x[-1]
gt_label = gt_label.type_as(x)
cls_score = self.fc(x)
losses = self.loss(cls_score, gt_label)
return losses
def simple_test(self, x):
"""Test without augmentation."""
if isinstance(x, tuple):
x = x[-1]
cls_score = self.fc(x)
if isinstance(cls_score, list):
cls_score = sum(cls_score) / float(len(cls_score))
pred = F.sigmoid(cls_score) if cls_score is not None else None
return self.post_process(pred)