mirror of
https://github.com/open-mmlab/mmpretrain.git
synced 2025-06-03 14:59:18 +08:00
49 lines
1.6 KiB
Python
49 lines
1.6 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
import math
|
||
|
from unittest import TestCase
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from mmengine.logging import MessageHub
|
||
|
from mmengine.testing import assert_allclose
|
||
|
|
||
|
from mmpretrain.models.utils import CosineEMA
|
||
|
|
||
|
|
||
|
class TestEMA(TestCase):
|
||
|
|
||
|
def test_cosine_ema(self):
|
||
|
model = nn.Sequential(nn.Conv2d(1, 5, kernel_size=3), nn.Linear(5, 10))
|
||
|
|
||
|
# init message hub
|
||
|
max_iters = 5
|
||
|
test = dict(name='ema_test')
|
||
|
message_hub = MessageHub.get_instance(**test)
|
||
|
message_hub.update_info('max_iters', max_iters)
|
||
|
|
||
|
# test EMA
|
||
|
momentum = 0.996
|
||
|
end_momentum = 1.
|
||
|
|
||
|
ema_model = CosineEMA(model, momentum=momentum)
|
||
|
averaged_params = [
|
||
|
torch.zeros_like(param) for param in model.parameters()
|
||
|
]
|
||
|
|
||
|
for i in range(max_iters):
|
||
|
updated_averaged_params = []
|
||
|
for p, p_avg in zip(model.parameters(), averaged_params):
|
||
|
p.detach().add_(torch.randn_like(p))
|
||
|
if i == 0:
|
||
|
updated_averaged_params.append(p.clone())
|
||
|
else:
|
||
|
m = end_momentum - (end_momentum - momentum) * (
|
||
|
math.cos(math.pi * i / float(max_iters)) + 1) / 2
|
||
|
updated_averaged_params.append(
|
||
|
(p_avg * m + p * (1 - m)).clone())
|
||
|
ema_model.update_parameters(model)
|
||
|
averaged_params = updated_averaged_params
|
||
|
|
||
|
for p_target, p_ema in zip(averaged_params, ema_model.parameters()):
|
||
|
assert_allclose(p_target, p_ema)
|