mmpretrain/configs/deit/metafile.yml

144 lines
6.0 KiB
YAML
Raw Normal View History

Collections:
- Name: DeiT
Metadata:
Training Data: ImageNet-1k
Architecture:
- Layer Normalization
- Scaled Dot-Product Attention
- Attention Dropout
- Multi-Head Attention
Paper:
URL: https://arxiv.org/abs/2012.12877
Title: "Training data-efficient image transformers & distillation through attention"
README: configs/deit/README.md
Models:
- Name: deit-tiny_3rdparty_pt-4xb256_in1k
Metadata:
FLOPs: 1080000000
Parameters: 5720000
In Collection: DeiT
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 72.13
Top 5 Accuracy: 91.13
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-tiny_3rdparty_pt-4xb256_in1k_20211124-e930093b.pth
Converted From:
Weights: https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth
Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L63
Config: configs/deit/deit-tiny_pt-4xb256_in1k.py
- Name: deit-tiny-distilled_3rdparty_pt-4xb256_in1k
Metadata:
FLOPs: 1080000000
Parameters: 5720000
In Collection: DeiT
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 74.51
Top 5 Accuracy: 91.90
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-tiny-distilled_3rdparty_pt-4xb256_in1k_20211216-c429839a.pth
Converted From:
Weights: https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth
Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L108
Config: configs/deit/deit-tiny-distilled_pt-4xb256_in1k.py
- Name: deit-small_3rdparty_pt-4xb256_in1k
Metadata:
FLOPs: 4240000000
Parameters: 22050000
In Collection: DeiT
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 79.83
Top 5 Accuracy: 94.95
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-small_3rdparty_pt-4xb256_in1k_20211124-ffe94edd.pth
Converted From:
Weights: https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth
Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L78
Config: configs/deit/deit-small_pt-4xb256_in1k.py
- Name: deit-small-distilled_3rdparty_pt-4xb256_in1k
Metadata:
FLOPs: 4240000000
Parameters: 22050000
In Collection: DeiT
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 81.17
Top 5 Accuracy: 95.40
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-small-distilled_3rdparty_pt-4xb256_in1k_20211216-4de1d725.pth
Converted From:
Weights: https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth
Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L123
Config: configs/deit/deit-small-distilled_pt-4xb256_in1k.py
- Name: deit-base_3rdparty_pt-16xb64_in1k
Metadata:
FLOPs: 16860000000
Parameters: 86570000
In Collection: DeiT
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 81.79
Top 5 Accuracy: 95.59
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-base_3rdparty_pt-16xb64_in1k_20211124-6f40c188.pth
Converted From:
Weights: https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth
Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L93
Config: configs/deit/deit-base_pt-16xb64_in1k.py
- Name: deit-base-distilled_3rdparty_pt-16xb64_in1k
Metadata:
FLOPs: 16860000000
Parameters: 86570000
In Collection: DeiT
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.33
Top 5 Accuracy: 96.49
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-base-distilled_3rdparty_pt-16xb64_in1k_20211216-42891296.pth
Converted From:
Weights: https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth
Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L138
Config: configs/deit/deit-base-distilled_pt-16xb64_in1k.py
- Name: deit-base_3rdparty_ft-16xb32_in1k-384px
Metadata:
FLOPs: 49370000000
Parameters: 86860000
In Collection: DeiT
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.04
Top 5 Accuracy: 96.31
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-base_3rdparty_ft-16xb32_in1k-384px_20211124-822d02f2.pth
Converted From:
Weights: https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth
Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L153
Config: configs/deit/deit-base_ft-16xb32_in1k-384px.py
- Name: deit-base-distilled_3rdparty_ft-16xb32_in1k-384px
Metadata:
FLOPs: 49370000000
Parameters: 86860000
In Collection: DeiT
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.55
Top 5 Accuracy: 97.35
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/deit/deit-base-distilled_3rdparty_ft-16xb32_in1k-384px_20211216-e48d6000.pth
Converted From:
Weights: https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth
Code: https://github.com/facebookresearch/deit/blob/f5123946205daf72a88783dae94cabff98c49c55/models.py#L168
Config: configs/deit/deit-base-distilled_ft-16xb32_in1k-384px.py