250 lines
7.5 KiB
Markdown
250 lines
7.5 KiB
Markdown
|
# How to Pretrain with Custom Dataset
|
||
|
|
||
|
- [How to Pretrain with Custom Dataset](#how-to-pretrain-with-custom-dataset)
|
||
|
- [Train MAE on Custom Dataset](#train-mae-on-custom-dataset)
|
||
|
- [Step-1: Get the path of custom dataset](#step-1-get-the-path-of-custom-dataset)
|
||
|
- [Step-2: Choose one config as template](#step-2-choose-one-config-as-template)
|
||
|
- [Step-3: Edit the dataset related config](#step-3-edit-the-dataset-related-config)
|
||
|
- [Train MAE on COCO Dataset](#train-mae-on-coco-dataset)
|
||
|
|
||
|
In this tutorial, we provide some tips on how to conduct self-supervised learning on your own dataset(without the need of label).
|
||
|
|
||
|
## Train MAE on Custom Dataset
|
||
|
|
||
|
In MMPretrain, We support the `CustomDataset` (similar to the `ImageFolder` in `torchvision`), which is able to read the images within the specified folder directly. You only need to prepare the path information of the custom dataset and edit the config.
|
||
|
|
||
|
### Step-1: Get the path of custom dataset
|
||
|
|
||
|
It should be like `data/custom_dataset/`
|
||
|
|
||
|
### Step-2: Choose one config as template
|
||
|
|
||
|
Here, we would like to use `configs/mae/mae_vit-base-p16_8xb512-amp-coslr-300e_in1k.py` as the example. We first copy this config file and rename it as `mae_vit-base-p16_8xb512-amp-coslr-300e_${custom_dataset}.py`.
|
||
|
|
||
|
- `custom_dataset`: indicate which dataset you used, e.g.,`in1k` for ImageNet dataset, `coco` for COCO dataset
|
||
|
|
||
|
The content of this config is:
|
||
|
|
||
|
```python
|
||
|
_base_ = [
|
||
|
'../_base_/models/mae_vit-base-p16.py',
|
||
|
'../_base_/datasets/imagenet_bs512_mae.py',
|
||
|
'../_base_/default_runtime.py',
|
||
|
]
|
||
|
|
||
|
# optimizer wrapper
|
||
|
optim_wrapper = dict(
|
||
|
type='AmpOptimWrapper',
|
||
|
loss_scale='dynamic',
|
||
|
optimizer=dict(
|
||
|
type='AdamW',
|
||
|
lr=1.5e-4 * 4096 / 256,
|
||
|
betas=(0.9, 0.95),
|
||
|
weight_decay=0.05),
|
||
|
paramwise_cfg=dict(
|
||
|
custom_keys={
|
||
|
'ln': dict(decay_mult=0.0),
|
||
|
'bias': dict(decay_mult=0.0),
|
||
|
'pos_embed': dict(decay_mult=0.),
|
||
|
'mask_token': dict(decay_mult=0.),
|
||
|
'cls_token': dict(decay_mult=0.)
|
||
|
}))
|
||
|
|
||
|
# learning rate scheduler
|
||
|
param_scheduler = [
|
||
|
dict(
|
||
|
type='LinearLR',
|
||
|
start_factor=0.0001,
|
||
|
by_epoch=True,
|
||
|
begin=0,
|
||
|
end=40,
|
||
|
convert_to_iter_based=True),
|
||
|
dict(
|
||
|
type='CosineAnnealingLR',
|
||
|
T_max=260,
|
||
|
by_epoch=True,
|
||
|
begin=40,
|
||
|
end=300,
|
||
|
convert_to_iter_based=True)
|
||
|
]
|
||
|
|
||
|
# runtime settings
|
||
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300)
|
||
|
default_hooks = dict(
|
||
|
# only keeps the latest 3 checkpoints
|
||
|
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
|
||
|
|
||
|
randomness = dict(seed=0, diff_rank_seed=True)
|
||
|
|
||
|
# auto resume
|
||
|
resume = True
|
||
|
|
||
|
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||
|
# based on the actual training batch size.
|
||
|
auto_scale_lr = dict(base_batch_size=4096)
|
||
|
```
|
||
|
|
||
|
### Step-3: Edit the dataset related config
|
||
|
|
||
|
The dataset related config is defined in `'../_base_/datasets/imagenet_bs512_mae.py'` in `_base_`. We then copy the content of dataset config file into our created file `mae_vit-base-p16_8xb512-coslr-400e_${custom_dataset}.py`.
|
||
|
|
||
|
- Set the `dataset_type = 'CustomDataset'`, and the path of the custom dataset ` data_root = /dataset/my_custom_dataset`.
|
||
|
- Remove the `ann_file` in `train_dataloader`, and edit the `data_prefix` if needed.
|
||
|
|
||
|
And the edited config will be like this:
|
||
|
|
||
|
```python
|
||
|
# >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>>
|
||
|
_base_ = [
|
||
|
'../_base_/models/mae_vit-base-p16.py',
|
||
|
'../_base_/datasets/imagenet_mae.py',
|
||
|
'../_base_/default_runtime.py',
|
||
|
]
|
||
|
|
||
|
# custom dataset
|
||
|
dataset_type = 'CustomDataset'
|
||
|
data_root = 'data/custom_dataset/'
|
||
|
|
||
|
train_dataloader = dict(
|
||
|
dataset=dict(
|
||
|
type=dataset_type,
|
||
|
data_root=data_root,
|
||
|
# ann_file='meta/train.txt', # removed if you don't have the annotation file
|
||
|
data_prefix=dict(img_path='./'))
|
||
|
# <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<<
|
||
|
|
||
|
# optimizer wrapper
|
||
|
optim_wrapper = dict(
|
||
|
type='AmpOptimWrapper',
|
||
|
loss_scale='dynamic',
|
||
|
optimizer=dict(
|
||
|
type='AdamW',
|
||
|
lr=1.5e-4 * 4096 / 256,
|
||
|
betas=(0.9, 0.95),
|
||
|
weight_decay=0.05),
|
||
|
paramwise_cfg=dict(
|
||
|
custom_keys={
|
||
|
'ln': dict(decay_mult=0.0),
|
||
|
'bias': dict(decay_mult=0.0),
|
||
|
'pos_embed': dict(decay_mult=0.),
|
||
|
'mask_token': dict(decay_mult=0.),
|
||
|
'cls_token': dict(decay_mult=0.)
|
||
|
}))
|
||
|
|
||
|
# learning rate scheduler
|
||
|
param_scheduler = [
|
||
|
dict(
|
||
|
type='LinearLR',
|
||
|
start_factor=0.0001,
|
||
|
by_epoch=True,
|
||
|
begin=0,
|
||
|
end=40,
|
||
|
convert_to_iter_based=True),
|
||
|
dict(
|
||
|
type='CosineAnnealingLR',
|
||
|
T_max=260,
|
||
|
by_epoch=True,
|
||
|
begin=40,
|
||
|
end=300,
|
||
|
convert_to_iter_based=True)
|
||
|
]
|
||
|
|
||
|
# runtime settings
|
||
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300)
|
||
|
default_hooks = dict(
|
||
|
# only keeps the latest 3 checkpoints
|
||
|
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
|
||
|
|
||
|
randomness = dict(seed=0, diff_rank_seed=True)
|
||
|
|
||
|
# auto resume
|
||
|
resume = True
|
||
|
|
||
|
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||
|
# based on the actual training batch size.
|
||
|
auto_scale_lr = dict(base_batch_size=4096)
|
||
|
```
|
||
|
|
||
|
By using the edited config file, you are able to train a self-supervised model with MAE algorithm on the custom dataset.
|
||
|
|
||
|
## Train MAE on COCO Dataset
|
||
|
|
||
|
```{note}
|
||
|
You need to install MMDetection to use the `mmdet.CocoDataset` follow this [documentation](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/get_started.md)
|
||
|
```
|
||
|
|
||
|
Follow the aforementioned idea, we also present an example of how to train MAE on COCO dataset. The edited file will be like this:
|
||
|
|
||
|
```python
|
||
|
# >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>>
|
||
|
_base_ = [
|
||
|
'../_base_/models/mae_vit-base-p16.py',
|
||
|
'../_base_/datasets/imagenet_mae.py',
|
||
|
'../_base_/default_runtime.py',
|
||
|
]
|
||
|
|
||
|
# custom dataset
|
||
|
dataset_type = 'mmdet.CocoDataset'
|
||
|
data_root = 'data/coco/'
|
||
|
|
||
|
train_dataloader = dict(
|
||
|
dataset=dict(
|
||
|
type=dataset_type,
|
||
|
data_root=data_root,
|
||
|
ann_file='annotations/instances_train2017.json',
|
||
|
data_prefix=dict(img='train2017/')))
|
||
|
|
||
|
# <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<<
|
||
|
|
||
|
# optimizer wrapper
|
||
|
optim_wrapper = dict(
|
||
|
type='AmpOptimWrapper',
|
||
|
loss_scale='dynamic',
|
||
|
optimizer=dict(
|
||
|
type='AdamW',
|
||
|
lr=1.5e-4 * 4096 / 256,
|
||
|
betas=(0.9, 0.95),
|
||
|
weight_decay=0.05),
|
||
|
paramwise_cfg=dict(
|
||
|
custom_keys={
|
||
|
'ln': dict(decay_mult=0.0),
|
||
|
'bias': dict(decay_mult=0.0),
|
||
|
'pos_embed': dict(decay_mult=0.),
|
||
|
'mask_token': dict(decay_mult=0.),
|
||
|
'cls_token': dict(decay_mult=0.)
|
||
|
}))
|
||
|
|
||
|
# learning rate scheduler
|
||
|
param_scheduler = [
|
||
|
dict(
|
||
|
type='LinearLR',
|
||
|
start_factor=0.0001,
|
||
|
by_epoch=True,
|
||
|
begin=0,
|
||
|
end=40,
|
||
|
convert_to_iter_based=True),
|
||
|
dict(
|
||
|
type='CosineAnnealingLR',
|
||
|
T_max=260,
|
||
|
by_epoch=True,
|
||
|
begin=40,
|
||
|
end=300,
|
||
|
convert_to_iter_based=True)
|
||
|
]
|
||
|
|
||
|
# runtime settings
|
||
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300)
|
||
|
default_hooks = dict(
|
||
|
# only keeps the latest 3 checkpoints
|
||
|
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
|
||
|
|
||
|
randomness = dict(seed=0, diff_rank_seed=True)
|
||
|
|
||
|
# auto resume
|
||
|
resume = True
|
||
|
|
||
|
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||
|
# based on the actual training batch size.
|
||
|
auto_scale_lr = dict(base_batch_size=4096)
|
||
|
```
|