mmpretrain/tests/test_models/test_heads.py

340 lines
12 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
2022-06-09 21:48:12 +08:00
from unittest import TestCase
import torch
2022-06-09 21:48:12 +08:00
from mmengine import is_seq_of
from mmcls.core import ClsDataSample
from mmcls.registry import MODELS
from mmcls.utils import register_all_modules
2022-06-09 21:48:12 +08:00
register_all_modules()
2022-06-09 21:48:12 +08:00
class TestClsHead(TestCase):
DEFAULT_ARGS = dict(type='ClsHead')
2022-06-09 21:48:12 +08:00
def test_pre_logits(self):
head = MODELS.build(self.DEFAULT_ARGS)
2022-06-09 21:48:12 +08:00
# return the last item
feats = (torch.rand(4, 10), torch.rand(4, 10))
pre_logits = head.pre_logits(feats)
self.assertIs(pre_logits, feats[-1])
2022-06-09 21:48:12 +08:00
def test_forward(self):
head = MODELS.build(self.DEFAULT_ARGS)
2022-06-09 21:48:12 +08:00
# return the last item (same as pre_logits)
feats = (torch.rand(4, 10), torch.rand(4, 10))
outs = head(feats)
self.assertIs(outs, feats[-1])
2022-06-09 21:48:12 +08:00
def test_loss(self):
feats = (torch.rand(4, 10), )
data_samples = [ClsDataSample().set_gt_label(1) for _ in range(4)]
2022-06-09 21:48:12 +08:00
# with cal_acc = False
head = MODELS.build(self.DEFAULT_ARGS)
2022-06-09 21:48:12 +08:00
losses = head.loss(feats, data_samples)
self.assertEqual(losses.keys(), {'loss'})
self.assertGreater(losses['loss'].item(), 0)
2022-06-09 21:48:12 +08:00
# with cal_acc = True
cfg = {**self.DEFAULT_ARGS, 'topk': (1, 2), 'cal_acc': True}
head = MODELS.build(cfg)
2022-06-09 21:48:12 +08:00
losses = head.loss(feats, data_samples)
self.assertEqual(losses.keys(),
{'loss', 'accuracy_top-1', 'accuracy_top-2'})
self.assertGreater(losses['loss'].item(), 0)
2022-06-09 21:48:12 +08:00
# test assertion when cal_acc but data is batch agumented.
data_samples = [
sample.set_gt_score(torch.rand(10)) for sample in data_samples
]
cfg = {
**self.DEFAULT_ARGS, 'cal_acc': True,
'loss': dict(type='CrossEntropyLoss', use_soft=True)
}
head = MODELS.build(cfg)
with self.assertRaisesRegex(AssertionError, 'batch augmentation'):
head.loss(feats, data_samples)
2022-06-09 21:48:12 +08:00
def test_predict(self):
feats = (torch.rand(4, 10), )
data_samples = [ClsDataSample().set_gt_label(1) for _ in range(4)]
head = MODELS.build(self.DEFAULT_ARGS)
2022-06-09 21:48:12 +08:00
# with without data_samples
predictions = head.predict(feats)
self.assertTrue(is_seq_of(predictions, ClsDataSample))
for pred in predictions:
self.assertIn('label', pred.pred_label)
self.assertIn('score', pred.pred_label)
2022-06-09 21:48:12 +08:00
# with with data_samples
predictions = head.predict(feats, data_samples)
self.assertTrue(is_seq_of(predictions, ClsDataSample))
for sample, pred in zip(data_samples, predictions):
self.assertIs(sample, pred)
self.assertIn('label', pred.pred_label)
self.assertIn('score', pred.pred_label)
2022-06-09 21:48:12 +08:00
class TestLinearClsHead(TestCase):
DEFAULT_ARGS = dict(type='LinearClsHead', in_channels=10, num_classes=5)
def test_initialize(self):
with self.assertRaisesRegex(ValueError, 'num_classes=-5 must be'):
MODELS.build({**self.DEFAULT_ARGS, 'num_classes': -5})
def test_pre_logits(self):
head = MODELS.build(self.DEFAULT_ARGS)
# return the last item
feats = (torch.rand(4, 10), torch.rand(4, 10))
pre_logits = head.pre_logits(feats)
self.assertIs(pre_logits, feats[-1])
def test_forward(self):
head = MODELS.build(self.DEFAULT_ARGS)
feats = (torch.rand(4, 10), torch.rand(4, 10))
outs = head(feats)
self.assertEqual(outs.shape, (4, 5))
2022-06-09 21:48:12 +08:00
"""Temporarily disabled.
@pytest.mark.parametrize('feat', [torch.rand(4, 10), (torch.rand(4, 10), )])
def test_multilabel_head(feat):
head = MultiLabelClsHead()
fake_gt_label = torch.randint(0, 2, (4, 10))
losses = head.forward_train(feat, fake_gt_label)
assert losses['loss'].item() > 0
# test simple_test with post_process
pred = head.simple_test(feat)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
pred = head.simple_test(feat)
assert pred.shape == (4, 10)
# test simple_test without post_process
pred = head.simple_test(feat, post_process=False)
assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
logits = head.simple_test(feat, sigmoid=False, post_process=False)
torch.testing.assert_allclose(pred, torch.sigmoid(logits))
# test pre_logits
features = head.pre_logits(feat)
if isinstance(feat, tuple):
torch.testing.assert_allclose(features, feat[0])
else:
torch.testing.assert_allclose(features, feat)
@pytest.mark.parametrize('feat', [torch.rand(4, 5), (torch.rand(4, 5), )])
def test_multilabel_linear_head(feat):
head = MultiLabelLinearClsHead(10, 5)
fake_gt_label = torch.randint(0, 2, (4, 10))
head.init_weights()
losses = head.forward_train(feat, fake_gt_label)
assert losses['loss'].item() > 0
# test simple_test with post_process
pred = head.simple_test(feat)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
pred = head.simple_test(feat)
assert pred.shape == (4, 10)
# test simple_test without post_process
pred = head.simple_test(feat, post_process=False)
assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
logits = head.simple_test(feat, sigmoid=False, post_process=False)
torch.testing.assert_allclose(pred, torch.sigmoid(logits))
# test pre_logits
features = head.pre_logits(feat)
if isinstance(feat, tuple):
torch.testing.assert_allclose(features, feat[0])
else:
torch.testing.assert_allclose(features, feat)
@pytest.mark.parametrize('feat', [torch.rand(4, 5), (torch.rand(4, 5), )])
def test_stacked_linear_cls_head(feat):
# test assertion
with pytest.raises(AssertionError):
StackedLinearClsHead(num_classes=3, in_channels=5, mid_channels=10)
with pytest.raises(AssertionError):
StackedLinearClsHead(num_classes=-1, in_channels=5, mid_channels=[10])
fake_gt_label = torch.randint(0, 2, (4, )) # B, num_classes
# test forward with default setting
head = StackedLinearClsHead(
num_classes=10, in_channels=5, mid_channels=[20])
head.init_weights()
losses = head.forward_train(feat, fake_gt_label)
assert losses['loss'].item() > 0
# test simple_test with post_process
pred = head.simple_test(feat)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
pred = head.simple_test(feat)
assert pred.shape == (4, 10)
# test simple_test without post_process
pred = head.simple_test(feat, post_process=False)
assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
logits = head.simple_test(feat, softmax=False, post_process=False)
torch.testing.assert_allclose(pred, torch.softmax(logits, dim=1))
# test pre_logits
features = head.pre_logits(feat)
assert features.shape == (4, 20)
# test forward with full function
head = StackedLinearClsHead(
num_classes=3,
in_channels=5,
mid_channels=[8, 10],
dropout_rate=0.2,
norm_cfg=dict(type='BN1d'),
act_cfg=dict(type='HSwish'))
head.init_weights()
losses = head.forward_train(feat, fake_gt_label)
assert losses['loss'].item() > 0
def test_vit_head():
fake_features = ([torch.rand(4, 7, 7, 16), torch.rand(4, 100)], )
fake_gt_label = torch.randint(0, 10, (4, ))
# test vit head forward
head = VisionTransformerClsHead(10, 100)
losses = head.forward_train(fake_features, fake_gt_label)
assert not hasattr(head.layers, 'pre_logits')
assert not hasattr(head.layers, 'act')
assert losses['loss'].item() > 0
# test vit head forward with hidden layer
head = VisionTransformerClsHead(10, 100, hidden_dim=20)
losses = head.forward_train(fake_features, fake_gt_label)
assert hasattr(head.layers, 'pre_logits') and hasattr(head.layers, 'act')
assert losses['loss'].item() > 0
# test vit head init_weights
head = VisionTransformerClsHead(10, 100, hidden_dim=20)
head.init_weights()
assert abs(head.layers.pre_logits.weight).sum() > 0
head = VisionTransformerClsHead(10, 100, hidden_dim=20)
# test simple_test with post_process
pred = head.simple_test(fake_features)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
pred = head.simple_test(fake_features)
assert pred.shape == (4, 10)
# test simple_test without post_process
pred = head.simple_test(fake_features, post_process=False)
assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
logits = head.simple_test(fake_features, softmax=False, post_process=False)
torch.testing.assert_allclose(pred, torch.softmax(logits, dim=1))
# test pre_logits
features = head.pre_logits(fake_features)
assert features.shape == (4, 20)
# test assertion
with pytest.raises(ValueError):
VisionTransformerClsHead(-1, 100)
def test_conformer_head():
fake_features = ([torch.rand(4, 64), torch.rand(4, 96)], )
fake_gt_label = torch.randint(0, 10, (4, ))
# test conformer head forward
head = ConformerHead(num_classes=10, in_channels=[64, 96])
losses = head.forward_train(fake_features, fake_gt_label)
assert losses['loss'].item() > 0
# test simple_test with post_process
pred = head.simple_test(fake_features)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
pred = head.simple_test(fake_features)
assert pred.shape == (4, 10)
# test simple_test without post_process
pred = head.simple_test(fake_features, post_process=False)
assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
logits = head.simple_test(fake_features, softmax=False, post_process=False)
torch.testing.assert_allclose(pred, torch.softmax(sum(logits), dim=1))
# test pre_logits
features = head.pre_logits(fake_features)
assert features is fake_features[0]
def test_deit_head():
fake_features = ([
torch.rand(4, 7, 7, 16),
torch.rand(4, 100),
torch.rand(4, 100)
], )
fake_gt_label = torch.randint(0, 10, (4, ))
# test deit head forward
head = DeiTClsHead(num_classes=10, in_channels=100)
losses = head.forward_train(fake_features, fake_gt_label)
assert not hasattr(head.layers, 'pre_logits')
assert not hasattr(head.layers, 'act')
assert losses['loss'].item() > 0
# test deit head forward with hidden layer
head = DeiTClsHead(num_classes=10, in_channels=100, hidden_dim=20)
losses = head.forward_train(fake_features, fake_gt_label)
assert hasattr(head.layers, 'pre_logits') and hasattr(head.layers, 'act')
assert losses['loss'].item() > 0
# test deit head init_weights
head = DeiTClsHead(10, 100, hidden_dim=20)
head.init_weights()
assert abs(head.layers.pre_logits.weight).sum() > 0
head = DeiTClsHead(10, 100, hidden_dim=20)
# test simple_test with post_process
pred = head.simple_test(fake_features)
assert isinstance(pred, list) and len(pred) == 4
with patch('torch.onnx.is_in_onnx_export', return_value=True):
pred = head.simple_test(fake_features)
assert pred.shape == (4, 10)
# test simple_test without post_process
pred = head.simple_test(fake_features, post_process=False)
assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
logits = head.simple_test(fake_features, softmax=False, post_process=False)
torch.testing.assert_allclose(pred, torch.softmax(logits, dim=1))
# test pre_logits
cls_token, dist_token = head.pre_logits(fake_features)
assert cls_token.shape == (4, 20)
assert dist_token.shape == (4, 20)
# test assertion
with pytest.raises(ValueError):
DeiTClsHead(-1, 100)
2022-06-09 21:48:12 +08:00
"""