28 lines
867 B
Python
Raw Normal View History

2023-05-19 18:35:44 +08:00
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmengine.evaluator import Evaluator
from mmpretrain.structures import DataSample
class TestScienceQAMetric:
def test_evaluate(self):
meta_info = {
'choices': ['A', 'B', 'C', 'D'],
'prediction': 'A',
'grade': 'grade1',
'subject': 'language science',
'answer': 1,
'hint': 'hint',
'image': torch.ones((3, 224, 224))
}
data_sample = DataSample(metainfo=meta_info)
data_samples = [data_sample for _ in range(10)]
evaluator = Evaluator(dict(type='mmpretrain.ScienceQAMetric'))
evaluator.process(data_samples)
res = evaluator.evaluate(4)
assert res['acc_grade_1_6'] == 0.0
assert res['acc_language'] == 0.0
assert res['all_acc'] == 0.0