mmpretrain/mmcls/datasets/base_dataset.py

76 lines
2.6 KiB
Python
Raw Normal View History

2020-05-21 21:21:43 +08:00
import copy
from abc import ABCMeta, abstractmethod
2020-07-01 16:09:06 +08:00
import numpy as np
2020-05-21 21:21:43 +08:00
from torch.utils.data import Dataset
from .pipelines import Compose
class BaseDataset(Dataset, metaclass=ABCMeta):
2020-07-01 16:09:06 +08:00
"""Base dataset.
2020-05-21 21:21:43 +08:00
2020-07-01 16:09:06 +08:00
Args:
data_prefix (str): the prefix of data path
pipeline (list): a list of dict, where each element represents
a operation defined in `mmcls.datasets.pipelines`
ann_file (str | None): the annotation file. When ann_file is str,
the subclass is expected to read from the ann_file. When ann_file
is None, the subclass is expected to read according to data_prefix
test_mode (bool): in train mode or test mode
"""
def __init__(self, data_prefix, pipeline, ann_file=None, test_mode=False):
2020-05-21 21:21:43 +08:00
super(BaseDataset, self).__init__()
self.ann_file = ann_file
self.data_prefix = data_prefix
self.test_mode = test_mode
self.pipeline = Compose(pipeline)
self.data_infos = self.load_annotations()
@abstractmethod
def load_annotations(self):
pass
2020-07-01 16:09:06 +08:00
def prepare_data(self, idx):
2020-05-21 21:21:43 +08:00
results = copy.deepcopy(self.data_infos[idx])
return self.pipeline(results)
def __len__(self):
return len(self.data_infos)
def __getitem__(self, idx):
2020-07-01 16:09:06 +08:00
return self.prepare_data(idx)
def evaluate(self, results, metric='accuracy', logger=None):
"""Evaluate the dataset.
Args:
results (list): Testing results of the dataset.
metric (str | list[str]): Metrics to be evaluated.
Default value is `accuracy`.
logger (logging.Logger | None | str): Logger used for printing
related information during evaluation. Default: None.
Returns:
dict: evaluation results
"""
if not isinstance(metric, str):
assert len(metric) == 1
metric = metric[0]
allowed_metrics = ['accuracy']
if metric not in allowed_metrics:
raise KeyError(f'metric {metric} is not supported')
eval_results = {}
if metric == 'accuracy':
nums = []
for result in results:
nums.append(result['num_samples'].item())
for topk, v in result['accuracy'].items():
if topk not in eval_results:
eval_results[topk] = []
eval_results[topk].append(v.item())
for topk, accs in eval_results.items():
eval_results[topk] = np.average(accs, weights=nums)
return eval_results