mmpretrain/mmcls/models/heads/cls_head.py

46 lines
1.4 KiB
Python
Raw Normal View History

from mmcls.models.losses import Accuracy
from ..builder import HEADS, build_loss
from .base_head import BaseHead
@HEADS.register_module()
class ClsHead(BaseHead):
"""classification head.
Args:
loss (dict): Config of classification loss.
topk (int | tuple): Top-k accuracy.
""" # noqa: W605
def __init__(self,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, )):
super(ClsHead, self).__init__()
assert isinstance(loss, dict)
assert isinstance(topk, (int, tuple))
if isinstance(topk, int):
topk = (topk, )
for _topk in topk:
assert _topk > 0, 'Top-k should be larger than 0'
self.topk = topk
self.compute_loss = build_loss(loss)
self.compute_accuracy = Accuracy(topk=self.topk)
def loss(self, cls_score, gt_label):
num_samples = len(cls_score)
losses = dict()
# compute loss
loss = self.compute_loss(cls_score, gt_label, avg_factor=num_samples)
# compute accuracy
acc = self.compute_accuracy(cls_score, gt_label)
assert len(acc) == len(self.topk)
losses['loss'] = loss
losses['accuracy'] = {f'top-{k}': a for k, a in zip(self.topk, acc)}
return losses
def forward_train(self, cls_score, gt_label):
losses = self.loss(cls_score, gt_label)
return losses