2023-02-23 11:17:16 +08:00
|
|
|
_base_ = '../_base_/default_runtime.py'
|
|
|
|
|
|
|
|
# dataset settings
|
|
|
|
dataset_type = 'ImageNet'
|
|
|
|
data_root = 'data/imagenet/'
|
|
|
|
data_preprocessor = dict(
|
|
|
|
type='SelfSupDataPreprocessor',
|
|
|
|
mean=[123.675, 116.28, 103.53],
|
|
|
|
std=[58.395, 57.12, 57.375],
|
2023-02-28 17:04:40 +08:00
|
|
|
to_rgb=True)
|
2023-02-23 11:17:16 +08:00
|
|
|
|
|
|
|
train_pipeline = [
|
|
|
|
dict(type='LoadImageFromFile'),
|
|
|
|
dict(
|
|
|
|
type='RandomResizedCrop',
|
|
|
|
size=224,
|
|
|
|
scale=(0.5, 1.0),
|
|
|
|
ratio=(0.75, 1.3333),
|
|
|
|
interpolation='bicubic'),
|
|
|
|
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
|
|
|
dict(
|
|
|
|
type='BEiTMaskGenerator',
|
|
|
|
input_size=14,
|
|
|
|
num_masking_patches=78,
|
|
|
|
min_num_patches=15,
|
|
|
|
),
|
|
|
|
dict(
|
|
|
|
type='PackSelfSupInputs',
|
|
|
|
algorithm_keys=['mask'],
|
|
|
|
meta_keys=['img_path'])
|
|
|
|
]
|
|
|
|
|
|
|
|
train_dataloader = dict(
|
|
|
|
batch_size=256,
|
|
|
|
num_workers=8,
|
|
|
|
persistent_workers=True,
|
|
|
|
pin_memory=True,
|
|
|
|
sampler=dict(type='DefaultSampler', shuffle=True),
|
|
|
|
collate_fn=dict(type='default_collate'),
|
|
|
|
dataset=dict(
|
|
|
|
type=dataset_type,
|
|
|
|
data_root=data_root,
|
|
|
|
ann_file='meta/train.txt',
|
|
|
|
data_prefix=dict(img_path='train/'),
|
|
|
|
pipeline=train_pipeline))
|
|
|
|
|
|
|
|
# model settings
|
|
|
|
model = dict(
|
|
|
|
type='MaskFeat',
|
|
|
|
data_preprocessor=dict(
|
|
|
|
mean=[123.675, 116.28, 103.53],
|
|
|
|
std=[58.395, 57.12, 57.375],
|
2023-02-28 17:04:40 +08:00
|
|
|
to_rgb=True),
|
2023-02-23 11:17:16 +08:00
|
|
|
backbone=dict(type='MaskFeatViT', arch='b', patch_size=16),
|
|
|
|
neck=dict(
|
|
|
|
type='LinearNeck',
|
|
|
|
in_channels=768,
|
|
|
|
out_channels=108,
|
|
|
|
init_cfg=dict(type='TruncNormal', layer='Linear', std=0.02, bias=0)),
|
|
|
|
head=dict(
|
|
|
|
type='MaskFeatPretrainHead',
|
|
|
|
loss=dict(type='PixelReconstructionLoss', criterion='L2')),
|
|
|
|
target_generator=dict(
|
|
|
|
type='HOGGenerator', nbins=9, pool=8, gaussian_window=16))
|
|
|
|
|
|
|
|
# optimizer wrapper
|
|
|
|
optim_wrapper = dict(
|
|
|
|
type='AmpOptimWrapper',
|
|
|
|
loss_scale='dynamic',
|
|
|
|
optimizer=dict(
|
|
|
|
type='AdamW', lr=2e-4 * 8, betas=(0.9, 0.999), weight_decay=0.05),
|
|
|
|
clip_grad=dict(max_norm=0.02),
|
|
|
|
paramwise_cfg=dict(
|
|
|
|
norm_decay_mult=0.0,
|
|
|
|
bias_decay_mult=0.0,
|
|
|
|
# commented 'pos_embed' and 'cls_token' to avoid loss stuck situation
|
|
|
|
custom_keys={
|
|
|
|
# 'pos_embed': dict(decay_mult=0.),
|
|
|
|
'mask_token': dict(decay_mult=0.),
|
|
|
|
# 'cls_token': dict(decay_mult=0.)
|
|
|
|
}))
|
|
|
|
|
|
|
|
# learning rate scheduler
|
|
|
|
param_scheduler = [
|
|
|
|
dict(
|
|
|
|
type='LinearLR',
|
|
|
|
start_factor=1e-6,
|
|
|
|
by_epoch=True,
|
|
|
|
begin=0,
|
|
|
|
end=30,
|
|
|
|
convert_to_iter_based=True),
|
|
|
|
dict(
|
|
|
|
type='CosineAnnealingLR',
|
|
|
|
T_max=270,
|
|
|
|
by_epoch=True,
|
|
|
|
begin=30,
|
|
|
|
end=300,
|
|
|
|
convert_to_iter_based=True)
|
|
|
|
]
|
|
|
|
|
|
|
|
# runtime settings
|
|
|
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300)
|
|
|
|
default_hooks = dict(
|
|
|
|
# only keeps the latest 3 checkpoints
|
|
|
|
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
|
|
|
|
|
|
|
|
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
|
|
|
# based on the actual training batch size.
|
|
|
|
auto_scale_lr = dict(base_batch_size=2048)
|