31 lines
1.4 KiB
Markdown
31 lines
1.4 KiB
Markdown
|
# Res2Net: A New Multi-scale Backbone Architecture
|
||
|
<!-- {Res2Net} -->
|
||
|
|
||
|
## Introduction
|
||
|
|
||
|
<!-- [ALGORITHM] -->
|
||
|
|
||
|
```latex
|
||
|
@article{gao2019res2net,
|
||
|
title={Res2Net: A New Multi-scale Backbone Architecture},
|
||
|
author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip},
|
||
|
journal={IEEE TPAMI},
|
||
|
year={2021},
|
||
|
doi={10.1109/TPAMI.2019.2938758},
|
||
|
}
|
||
|
```
|
||
|
|
||
|
## Pretrain model
|
||
|
|
||
|
The pre-trained models are converted from [official repo](https://github.com/Res2Net/Res2Net-PretrainedModels).
|
||
|
|
||
|
### ImageNet 1k
|
||
|
|
||
|
| Model | resolution | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Download |
|
||
|
|:---------------------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:--------:|
|
||
|
| Res2Net-50-14w-8s\* | 224x224 | 25.06 | 4.22 | 78.14 | 93.85 | [model](https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w14-s8_3rdparty_8xb32_in1k_20210927-bc967bf1.pth)|
|
||
|
| Res2Net-50-26w-8s\* | 224x224 | 48.40 | 8.39 | 79.20 | 94.36 | [model](https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w26-s8_3rdparty_8xb32_in1k_20210927-f547a94b.pth)|
|
||
|
| Res2Net-101-26w-4s\* | 224x224 | 45.21 | 8.12 | 79.19 | 94.44 | [model](https://download.openmmlab.com/mmclassification/v0/res2net/res2net101-w26-s4_3rdparty_8xb32_in1k_20210927-870b6c36.pth)|
|
||
|
|
||
|
*Models with \* are converted from other repos.*
|