mmpretrain/tools/visualizations/vis_cam.py

342 lines
13 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import copy
import math
import re
from pathlib import Path
import mmcv
import numpy as np
from mmcv import Config, DictAction
from mmcv.utils import to_2tuple
from torch.nn import BatchNorm1d, BatchNorm2d, GroupNorm, LayerNorm
from mmcls.apis import init_model
from mmcls.datasets.pipelines import Compose
try:
from pytorch_grad_cam import (EigenCAM, GradCAM, GradCAMPlusPlus, XGradCAM,
EigenGradCAM, LayerCAM)
from pytorch_grad_cam.activations_and_gradients import (
ActivationsAndGradients)
from pytorch_grad_cam.utils.image import show_cam_on_image
except ImportError:
raise ImportError('Please run `pip install "grad-cam>=1.3.6"` to install '
'3rd party package pytorch_grad_cam.')
# set of transforms, which just change data format, not change the pictures
FORMAT_TRANSFORMS_SET = {'ToTensor', 'Normalize', 'ImageToTensor', 'Collect'}
# Supported grad-cam type map
METHOD_MAP = {
'gradcam': GradCAM,
'gradcam++': GradCAMPlusPlus,
'xgradcam': XGradCAM,
'eigencam': EigenCAM,
'eigengradcam': EigenGradCAM,
'layercam': LayerCAM,
}
def parse_args():
parser = argparse.ArgumentParser(description='Visualize CAM')
parser.add_argument('img', help='Image file')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--target-layers',
default=[],
nargs='+',
type=str,
help='The target layers to get CAM, if not set, the tool will '
'specify the norm layer in the last block. Backbones '
'implemented by users are recommended to manually specify'
' target layers in commmad statement.')
parser.add_argument(
'--preview-model',
default=False,
action='store_true',
help='To preview all the model layers')
parser.add_argument(
'--method',
default='GradCAM',
help='Type of method to use, supports '
f'{", ".join(list(METHOD_MAP.keys()))}.')
parser.add_argument(
'--target-category',
default=None,
type=int,
help='The target category to get CAM, default to use result '
'get from given model.')
parser.add_argument(
'--eigen-smooth',
default=False,
action='store_true',
help='Reduce noise by taking the first principle componenet of '
'``cam_weights*activations``')
parser.add_argument(
'--aug-smooth',
default=False,
action='store_true',
help='Wether to use test time augmentation, default not to use')
parser.add_argument(
'--save-path',
type=Path,
help='The path to save visualize cam image, default not to save.')
parser.add_argument('--device', default='cpu', help='Device to use cpu')
parser.add_argument(
'--vit-like',
action='store_true',
help='Whether the network is a ViT-like network.')
parser.add_argument(
'--num-extra-tokens',
type=int,
help='The number of extra tokens in ViT-like backbones. Defaults to'
' use num_extra_tokens of the backbone.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
if args.method.lower() not in METHOD_MAP.keys():
raise ValueError(f'invalid CAM type {args.method},'
f' supports {", ".join(list(METHOD_MAP.keys()))}.')
return args
def build_reshape_transform(model, args):
"""Build reshape_transform for `cam.activations_and_grads`, which is
necessary for ViT-like networks."""
# ViT_based_Transformers have an additional clstoken in features
if not args.vit_like:
def check_shape(tensor):
assert len(tensor.size()) != 3, \
(f"The input feature's shape is {tensor.size()}, and it seems "
'to have been flattened or from a vit-like network. '
"Please use `--vit-like` if it's from a vit-like network.")
return tensor
return check_shape
if args.num_extra_tokens is not None:
num_extra_tokens = args.num_extra_tokens
elif hasattr(model.backbone, 'num_extra_tokens'):
num_extra_tokens = model.backbone.num_extra_tokens
else:
num_extra_tokens = 1
def _reshape_transform(tensor):
"""reshape_transform helper."""
assert len(tensor.size()) == 3, \
(f"The input feature's shape is {tensor.size()}, "
'and the feature seems not from a vit-like network?')
tensor = tensor[:, num_extra_tokens:, :]
# get heat_map_height and heat_map_width, preset input is a square
heat_map_area = tensor.size()[1]
height, width = to_2tuple(int(math.sqrt(heat_map_area)))
assert height * height == heat_map_area, \
(f"The input feature's length ({heat_map_area+num_extra_tokens}) "
f'minus num-extra-tokens ({num_extra_tokens}) is {heat_map_area},'
' which is not a perfect square number. Please check if you used '
'a wrong num-extra-tokens.')
result = tensor.reshape(tensor.size(0), height, width, tensor.size(2))
# Bring the channels to the first dimension, like in CNNs.
result = result.transpose(2, 3).transpose(1, 2)
return result
return _reshape_transform
def apply_transforms(img_path, pipeline_cfg):
"""Apply transforms pipeline and get both formatted data and the image
without formatting."""
data = dict(img_info=dict(filename=img_path), img_prefix=None)
def split_pipeline_cfg(pipeline_cfg):
"""to split the transfoms into image_transforms and
format_transforms."""
image_transforms_cfg, format_transforms_cfg = [], []
if pipeline_cfg[0]['type'] != 'LoadImageFromFile':
pipeline_cfg.insert(0, dict(type='LoadImageFromFile'))
for transform in pipeline_cfg:
if transform['type'] in FORMAT_TRANSFORMS_SET:
format_transforms_cfg.append(transform)
else:
image_transforms_cfg.append(transform)
return image_transforms_cfg, format_transforms_cfg
image_transforms, format_transforms = split_pipeline_cfg(pipeline_cfg)
image_transforms = Compose(image_transforms)
format_transforms = Compose(format_transforms)
intermediate_data = image_transforms(data)
inference_img = copy.deepcopy(intermediate_data['img'])
format_data = format_transforms(intermediate_data)
return format_data, inference_img
class MMActivationsAndGradients(ActivationsAndGradients):
"""Activations and gradients manager for mmcls models."""
def __call__(self, x):
self.gradients = []
self.activations = []
return self.model(
x, return_loss=False, softmax=False, post_process=False)
def init_cam(method, model, target_layers, use_cuda, reshape_transform):
"""Construct the CAM object once, In order to be compatible with mmcls,
here we modify the ActivationsAndGradients object."""
GradCAM_Class = METHOD_MAP[method.lower()]
cam = GradCAM_Class(
model=model, target_layers=target_layers, use_cuda=use_cuda)
# Release the original hooks in ActivationsAndGradients to use
# MMActivationsAndGradients.
cam.activations_and_grads.release()
cam.activations_and_grads = MMActivationsAndGradients(
cam.model, cam.target_layers, reshape_transform)
return cam
def get_layer(layer_str, model):
"""get model layer from given str."""
cur_layer = model
layer_names = layer_str.strip().split('.')
def get_children_by_name(model, name):
try:
return getattr(model, name)
except AttributeError as e:
raise AttributeError(
e.args[0] +
'. Please use `--preview-model` to check keys at first.')
def get_children_by_eval(model, name):
try:
return eval(f'model{name}', {}, {'model': model})
except (AttributeError, IndexError) as e:
raise AttributeError(
e.args[0] +
'. Please use `--preview-model` to check keys at first.')
for layer_name in layer_names:
match_res = re.match('(?P<name>.+?)(?P<indices>(\\[.+\\])+)',
layer_name)
if match_res:
layer_name = match_res.groupdict()['name']
indices = match_res.groupdict()['indices']
cur_layer = get_children_by_name(cur_layer, layer_name)
cur_layer = get_children_by_eval(cur_layer, indices)
else:
cur_layer = get_children_by_name(cur_layer, layer_name)
return cur_layer
def show_cam_grad(grayscale_cam, src_img, title, out_path=None):
"""fuse src_img and grayscale_cam and show or save."""
grayscale_cam = grayscale_cam[0, :]
src_img = np.float32(src_img) / 255
visualization_img = show_cam_on_image(
src_img, grayscale_cam, use_rgb=False)
if out_path:
mmcv.imwrite(visualization_img, str(out_path))
else:
mmcv.imshow(visualization_img, win_name=title)
def get_default_traget_layers(model, args):
"""get default target layers from given model, here choose nrom type layer
as default target layer."""
norm_layers = []
for m in model.backbone.modules():
if isinstance(m, (BatchNorm2d, LayerNorm, GroupNorm, BatchNorm1d)):
norm_layers.append(m)
if len(norm_layers) == 0:
raise ValueError(
'`--target-layers` is empty. Please use `--preview-model`'
' to check keys at first and then specify `target-layers`.')
# if the model is CNN model or Swin model, just use the last norm
# layer as the target-layer, if the model is ViT model, the final
# classification is done on the class token computed in the last
# attention block, the output will not be affected by the 14x14
# channels in the last layer. The gradient of the output with
# respect to them, will be 0! here use the last 3rd norm layer.
# means the first norm of the last decoder block.
if args.vit_like:
if args.num_extra_tokens:
num_extra_tokens = args.num_extra_tokens
elif hasattr(model.backbone, 'num_extra_tokens'):
num_extra_tokens = model.backbone.num_extra_tokens
else:
raise AttributeError('Please set num_extra_tokens in backbone'
" or using 'num-extra-tokens'")
# if a vit-like backbone's num_extra_tokens bigger than 0, view it
# as a VisionTransformer backbone, eg. DeiT, T2T-ViT.
if num_extra_tokens >= 1:
print('Automatically choose the last norm layer before the '
'final attention block as target_layer..')
return [norm_layers[-3]]
print('Automatically choose the last norm layer as target_layer.')
target_layers = [norm_layers[-1]]
return target_layers
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# build the model from a config file and a checkpoint file
model = init_model(cfg, args.checkpoint, device=args.device)
if args.preview_model:
print(model)
print('\n Please remove `--preview-model` to get the CAM.')
return
# apply transform and perpare data
data, src_img = apply_transforms(args.img, cfg.data.test.pipeline)
# build target layers
if args.target_layers:
target_layers = [
get_layer(layer, model) for layer in args.target_layers
]
else:
target_layers = get_default_traget_layers(model, args)
# init a cam grad calculator
use_cuda = ('cuda' in args.device)
reshape_transform = build_reshape_transform(model, args)
cam = init_cam(args.method, model, target_layers, use_cuda,
reshape_transform)
# calculate cam grads and show|save the visualization image
grayscale_cam = cam(
input_tensor=data['img'].unsqueeze(0),
target_category=args.target_category,
eigen_smooth=args.eigen_smooth,
aug_smooth=args.aug_smooth)
show_cam_grad(
grayscale_cam, src_img, title=args.method, out_path=args.save_path)
if __name__ == '__main__':
main()