2022-03-16 16:22:28 +08:00
|
|
|
# dataset settings
|
|
|
|
dataset_type = 'CUB'
|
2022-08-29 11:10:05 +08:00
|
|
|
data_preprocessor = dict(
|
2022-10-17 17:08:18 +08:00
|
|
|
num_classes=200,
|
2022-06-01 14:11:53 +08:00
|
|
|
# RGB format normalization parameters
|
|
|
|
mean=[123.675, 116.28, 103.53],
|
|
|
|
std=[58.395, 57.12, 57.375],
|
|
|
|
# convert image from BGR to RGB
|
|
|
|
to_rgb=True,
|
|
|
|
)
|
|
|
|
|
2022-03-16 16:22:28 +08:00
|
|
|
train_pipeline = [
|
|
|
|
dict(type='LoadImageFromFile'),
|
2022-05-19 00:48:59 +08:00
|
|
|
dict(type='Resize', scale=510),
|
2022-06-02 17:52:59 +08:00
|
|
|
dict(type='RandomCrop', crop_size=384),
|
2022-06-01 14:11:53 +08:00
|
|
|
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
2023-03-03 15:01:11 +08:00
|
|
|
dict(type='PackInputs'),
|
2022-03-16 16:22:28 +08:00
|
|
|
]
|
2022-06-01 14:11:53 +08:00
|
|
|
|
2022-03-16 16:22:28 +08:00
|
|
|
test_pipeline = [
|
|
|
|
dict(type='LoadImageFromFile'),
|
2022-05-19 00:48:59 +08:00
|
|
|
dict(type='Resize', scale=510),
|
2022-03-16 16:22:28 +08:00
|
|
|
dict(type='CenterCrop', crop_size=384),
|
2023-03-03 15:01:11 +08:00
|
|
|
dict(type='PackInputs'),
|
2022-03-16 16:22:28 +08:00
|
|
|
]
|
|
|
|
|
2022-06-01 14:11:53 +08:00
|
|
|
train_dataloader = dict(
|
|
|
|
batch_size=8,
|
|
|
|
num_workers=2,
|
2022-06-27 18:00:52 +08:00
|
|
|
dataset=dict(
|
|
|
|
type=dataset_type,
|
|
|
|
data_root='data/CUB_200_2011',
|
2023-05-05 14:43:14 +08:00
|
|
|
split='train',
|
2022-06-27 18:00:52 +08:00
|
|
|
pipeline=train_pipeline),
|
2022-06-01 14:11:53 +08:00
|
|
|
sampler=dict(type='DefaultSampler', shuffle=True),
|
|
|
|
)
|
|
|
|
|
|
|
|
val_dataloader = dict(
|
|
|
|
batch_size=8,
|
|
|
|
num_workers=2,
|
2022-06-27 18:00:52 +08:00
|
|
|
dataset=dict(
|
|
|
|
type=dataset_type,
|
|
|
|
data_root='data/CUB_200_2011',
|
2023-05-05 14:43:14 +08:00
|
|
|
split='test',
|
2022-06-27 18:00:52 +08:00
|
|
|
pipeline=test_pipeline),
|
2022-06-01 14:11:53 +08:00
|
|
|
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
|
|
)
|
|
|
|
val_evaluator = dict(type='Accuracy', topk=(1, ))
|
2022-03-16 16:22:28 +08:00
|
|
|
|
2022-06-01 14:11:53 +08:00
|
|
|
test_dataloader = val_dataloader
|
|
|
|
test_evaluator = val_evaluator
|