2023-02-23 11:17:16 +08:00
|
|
|
_base_ = [
|
|
|
|
'../_base_/datasets/imagenet_bs512_mocov3.py',
|
|
|
|
'../_base_/default_runtime.py',
|
|
|
|
]
|
|
|
|
|
|
|
|
# model settings
|
|
|
|
temperature = 1.0
|
|
|
|
model = dict(
|
|
|
|
type='MoCoV3',
|
2023-03-06 16:53:15 +08:00
|
|
|
base_momentum=0.01, # 0.01 for 100e and 300e, 0.004 for 1000e
|
|
|
|
backbone=dict(type='ResNet', depth=50, norm_cfg=dict(type='SyncBN')),
|
2023-02-23 11:17:16 +08:00
|
|
|
neck=dict(
|
|
|
|
type='NonLinearNeck',
|
|
|
|
in_channels=2048,
|
|
|
|
hid_channels=4096,
|
|
|
|
out_channels=256,
|
|
|
|
num_layers=2,
|
|
|
|
with_bias=False,
|
|
|
|
with_last_bn=True,
|
|
|
|
with_last_bn_affine=False,
|
|
|
|
with_last_bias=False,
|
2023-03-09 11:02:58 +08:00
|
|
|
with_avg_pool=True),
|
2023-02-23 11:17:16 +08:00
|
|
|
head=dict(
|
|
|
|
type='MoCoV3Head',
|
|
|
|
predictor=dict(
|
|
|
|
type='NonLinearNeck',
|
|
|
|
in_channels=256,
|
|
|
|
hid_channels=4096,
|
|
|
|
out_channels=256,
|
|
|
|
num_layers=2,
|
|
|
|
with_bias=False,
|
|
|
|
with_last_bn=False,
|
|
|
|
with_last_bn_affine=False,
|
|
|
|
with_last_bias=False,
|
|
|
|
with_avg_pool=False),
|
|
|
|
loss=dict(type='CrossEntropyLoss', loss_weight=2 * temperature),
|
|
|
|
temperature=temperature))
|
|
|
|
|
|
|
|
# optimizer
|
|
|
|
optim_wrapper = dict(
|
|
|
|
type='AmpOptimWrapper',
|
|
|
|
loss_scale='dynamic',
|
|
|
|
optimizer=dict(type='LARS', lr=4.8, weight_decay=1e-6, momentum=0.9),
|
|
|
|
paramwise_cfg=dict(
|
|
|
|
custom_keys={
|
|
|
|
'bn': dict(decay_mult=0, lars_exclude=True),
|
|
|
|
'bias': dict(decay_mult=0, lars_exclude=True),
|
|
|
|
# bn layer in ResNet block downsample module
|
|
|
|
'downsample.1': dict(decay_mult=0, lars_exclude=True),
|
|
|
|
}),
|
|
|
|
)
|
|
|
|
|
|
|
|
# learning rate scheduler
|
|
|
|
param_scheduler = [
|
|
|
|
dict(
|
|
|
|
type='LinearLR',
|
|
|
|
start_factor=1e-4,
|
|
|
|
by_epoch=True,
|
|
|
|
begin=0,
|
|
|
|
end=10,
|
|
|
|
convert_to_iter_based=True),
|
|
|
|
dict(
|
|
|
|
type='CosineAnnealingLR',
|
|
|
|
T_max=290,
|
|
|
|
by_epoch=True,
|
|
|
|
begin=10,
|
|
|
|
end=300,
|
|
|
|
convert_to_iter_based=True)
|
|
|
|
]
|
|
|
|
|
|
|
|
# runtime settings
|
|
|
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300)
|
|
|
|
# only keeps the latest 3 checkpoints
|
|
|
|
default_hooks = dict(checkpoint=dict(max_keep_ckpts=3))
|
|
|
|
|
|
|
|
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
|
|
|
# based on the actual training batch size.
|
|
|
|
auto_scale_lr = dict(base_batch_size=4096)
|