257 lines
8.4 KiB
Python
257 lines
8.4 KiB
Python
|
import logging
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.utils.checkpoint as cp
|
||
|
|
||
|
from ..runner import load_checkpoint
|
||
|
from .base_backbone import BaseBackbone
|
||
|
from .weight_init import constant_init, kaiming_init
|
||
|
|
||
|
|
||
|
def conv_bn(inp, oup, stride):
|
||
|
return nn.Sequential(
|
||
|
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
|
||
|
nn.BatchNorm2d(oup),
|
||
|
nn.ReLU(inplace=True)
|
||
|
)
|
||
|
|
||
|
|
||
|
def conv_1x1_bn(inp, oup):
|
||
|
return nn.Sequential(
|
||
|
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
|
||
|
nn.BatchNorm2d(oup),
|
||
|
nn.ReLU(inplace=True)
|
||
|
)
|
||
|
|
||
|
|
||
|
def channel_shuffle(x, groups):
|
||
|
batchsize, num_channels, height, width = x.data.size()
|
||
|
assert (num_channels % groups == 0)
|
||
|
channels_per_group = num_channels // groups
|
||
|
|
||
|
# reshape
|
||
|
x = x.view(batchsize, groups, channels_per_group, height, width)
|
||
|
|
||
|
# transpose
|
||
|
# - contiguous() required if transpose() is used before view().
|
||
|
# See https://github.com/pytorch/pytorch/issues/764
|
||
|
x = torch.transpose(x, 1, 2).contiguous()
|
||
|
|
||
|
# flatten
|
||
|
x = x.view(batchsize, -1, height, width)
|
||
|
|
||
|
return x
|
||
|
|
||
|
|
||
|
def _make_divisible(v, divisor, min_value=None):
|
||
|
if min_value is None:
|
||
|
min_value = divisor
|
||
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
||
|
# Make sure that round down does not go down by more than 10%.
|
||
|
if new_v < 0.9 * v:
|
||
|
new_v += divisor
|
||
|
return new_v
|
||
|
|
||
|
|
||
|
class InvertedResidual(nn.Module):
|
||
|
def __init__(self, inp, oup, stride, with_cp=False):
|
||
|
super(InvertedResidual, self).__init__()
|
||
|
|
||
|
if not (1 <= stride <= 3):
|
||
|
raise ValueError('illegal stride value')
|
||
|
self.stride = stride
|
||
|
self.with_cp = with_cp
|
||
|
|
||
|
branch_features = oup // 2
|
||
|
assert (self.stride != 1) or (inp == branch_features << 1)
|
||
|
|
||
|
if self.stride > 1:
|
||
|
self.branch1 = nn.Sequential(
|
||
|
self.depthwise_conv(inp, inp, kernel_size=3,
|
||
|
stride=self.stride, padding=1),
|
||
|
nn.BatchNorm2d(inp),
|
||
|
nn.Conv2d(inp, branch_features, kernel_size=1,
|
||
|
stride=1, padding=0, bias=False),
|
||
|
nn.BatchNorm2d(branch_features),
|
||
|
nn.ReLU(inplace=True),
|
||
|
)
|
||
|
else:
|
||
|
self.branch1 = nn.Sequential()
|
||
|
|
||
|
self.branch2 = nn.Sequential(
|
||
|
nn.Conv2d(inp if (self.stride > 1) else branch_features,
|
||
|
branch_features, kernel_size=1,
|
||
|
stride=1, padding=0, bias=False),
|
||
|
nn.BatchNorm2d(branch_features),
|
||
|
nn.ReLU(inplace=True),
|
||
|
self.depthwise_conv(branch_features, branch_features,
|
||
|
kernel_size=3, stride=self.stride, padding=1),
|
||
|
nn.BatchNorm2d(branch_features),
|
||
|
nn.Conv2d(branch_features, branch_features,
|
||
|
kernel_size=1, stride=1, padding=0, bias=False),
|
||
|
nn.BatchNorm2d(branch_features),
|
||
|
nn.ReLU(inplace=True),
|
||
|
)
|
||
|
|
||
|
@staticmethod
|
||
|
def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
|
||
|
return nn.Conv2d(i, o, kernel_size, stride,
|
||
|
padding, bias=bias, groups=i)
|
||
|
|
||
|
def forward(self, x):
|
||
|
def _inner_forward(x):
|
||
|
if self.stride == 1:
|
||
|
x1, x2 = x.chunk(2, dim=1)
|
||
|
out = torch.cat((x1, self.branch2(x2)), dim=1)
|
||
|
else:
|
||
|
out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
|
||
|
|
||
|
out = channel_shuffle(out, 2)
|
||
|
|
||
|
return out
|
||
|
|
||
|
if self.with_cp and x.requires_grad:
|
||
|
out = cp.checkpoint(_inner_forward, x)
|
||
|
else:
|
||
|
out = _inner_forward(x)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class ShuffleNetv2(BaseBackbone):
|
||
|
"""ShuffleNetv2 backbone.
|
||
|
|
||
|
Args:
|
||
|
groups (int): number of groups to be used in grouped
|
||
|
1x1 convolutions in each ShuffleUnit. Default is 3 for best
|
||
|
performance according to original paper.
|
||
|
widen_factor (float): Config of widen_factor.
|
||
|
out_indices (Sequence[int]): Output from which stages.
|
||
|
frozen_stages (int): Stages to be frozen (all param fixed). -1 means
|
||
|
not freezing any parameters.
|
||
|
bn_eval (bool): Whether to set nn.BatchNorm2d layers as eval mode,
|
||
|
namely, freeze
|
||
|
running stats (mean and var).
|
||
|
bn_frozen (bool): Whether to freeze weight and bias of
|
||
|
nn.BatchNorm2d layers.
|
||
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
|
||
|
memory while slowing down the training speed.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
groups=3,
|
||
|
widen_factor=1.0,
|
||
|
out_indices=(0, 1, 2, 3),
|
||
|
frozen_stages=-1,
|
||
|
bn_eval=True,
|
||
|
bn_frozen=False,
|
||
|
with_cp=False):
|
||
|
super(ShuffleNetv2, self).__init__()
|
||
|
blocks = [4, 8, 4]
|
||
|
self.groups = groups
|
||
|
self.out_indices = out_indices
|
||
|
self.frozen_stages = frozen_stages
|
||
|
self.bn_eval = bn_eval
|
||
|
self.bn_frozen = bn_frozen
|
||
|
self.with_cp = with_cp
|
||
|
|
||
|
if widen_factor == 0.5:
|
||
|
channels = [48, 96, 192, 1024]
|
||
|
elif widen_factor == 1.0:
|
||
|
channels = [116, 232, 464, 1024]
|
||
|
elif widen_factor == 1.5:
|
||
|
channels = [176, 352, 704, 1024]
|
||
|
elif widen_factor == 2.0:
|
||
|
channels = [244, 488, 976, 2048]
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"""{} groups is not supported for
|
||
|
1x1 Grouped Convolutions""".format(groups))
|
||
|
channels = [_make_divisible(ch * widen_factor, 8) for ch in channels]
|
||
|
|
||
|
self.inplanes = channels[0]
|
||
|
self.conv1 = conv_bn(3, self.inplanes, 2)
|
||
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||
|
|
||
|
self.layer2 = self._make_layer(channels[1], blocks[0], with_cp=with_cp)
|
||
|
self.layer3 = self._make_layer(channels[2], blocks[1], with_cp=with_cp)
|
||
|
self.layer4 = self._make_layer(channels[3], blocks[2], with_cp=with_cp)
|
||
|
|
||
|
self.conv_out = conv_1x1_bn(self.inplanes, channels[-1])
|
||
|
|
||
|
def init_weights(self, pretrained=None):
|
||
|
if isinstance(pretrained, str):
|
||
|
logger = logging.getLogger()
|
||
|
load_checkpoint(self, pretrained, strict=False, logger=logger)
|
||
|
elif pretrained is None:
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, nn.Conv2d):
|
||
|
kaiming_init(m)
|
||
|
elif isinstance(m, nn.BatchNorm2d):
|
||
|
constant_init(m, 1)
|
||
|
else:
|
||
|
raise TypeError('pretrained must be a str or None')
|
||
|
|
||
|
def _make_layer(self,
|
||
|
outplanes,
|
||
|
blocks,
|
||
|
with_cp):
|
||
|
layers = []
|
||
|
for i in range(blocks):
|
||
|
if i == 0:
|
||
|
layers.append(
|
||
|
InvertedResidual(self.inplanes, outplanes,
|
||
|
stride=2, with_cp=with_cp))
|
||
|
else:
|
||
|
layers.append(
|
||
|
InvertedResidual(self.inplanes, outplanes,
|
||
|
stride=1, with_cp=with_cp)
|
||
|
)
|
||
|
self.inplanes = outplanes
|
||
|
|
||
|
return nn.Sequential(*layers)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.conv1(x)
|
||
|
x = self.maxpool(x)
|
||
|
|
||
|
outs = []
|
||
|
if 0 in self.out_indices:
|
||
|
outs.append(x)
|
||
|
x = self.layer2(x)
|
||
|
if 1 in self.out_indices:
|
||
|
outs.append(x)
|
||
|
x = self.layer3(x)
|
||
|
if 2 in self.out_indices:
|
||
|
outs.append(x)
|
||
|
x = self.layer4(x)
|
||
|
if 3 in self.out_indices:
|
||
|
outs.append(x)
|
||
|
|
||
|
x = self.conv_out(x)
|
||
|
outs.append(x)
|
||
|
|
||
|
if len(outs) == 1:
|
||
|
return outs[0]
|
||
|
else:
|
||
|
return tuple(outs)
|
||
|
|
||
|
def train(self, mode=True):
|
||
|
super(ShuffleNetv2, self).train(mode)
|
||
|
if self.bn_eval:
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, nn.BatchNorm2d):
|
||
|
m.eval()
|
||
|
if self.bn_frozen:
|
||
|
for params in m.parameters():
|
||
|
params.requires_grad = False
|
||
|
if mode and self.frozen_stages >= 0:
|
||
|
for param in self.conv1.parameters():
|
||
|
param.requires_grad = False
|
||
|
for i in range(1, self.frozen_stages + 1):
|
||
|
mod = getattr(self, 'layer{}'.format(i))
|
||
|
mod.eval()
|
||
|
for param in mod.parameters():
|
||
|
param.requires_grad = False
|