mmpretrain/configs/blip/blip-base_8xb32_retrieval_f...

84 lines
2.0 KiB
Python
Raw Normal View History

_base_ = [
'../_base_/datasets/flickr30k_retrieval.py',
'../_base_/default_runtime.py',
]
# model settings
model = dict(
type='BlipRetrieval',
tokenizer=dict(type='BlipTokenizer', name_or_path='bert-base-uncased'),
vision_backbone=dict(
type='VisionTransformer',
arch='b',
img_size=384,
patch_size=16,
out_type='raw',
),
text_backbone=dict(
type='XBertEncoder',
med_config=dict(
architectures=['BertModel'],
attention_probs_dropout_prob=0.1,
hidden_act='gelu',
hidden_dropout_prob=0.1,
hidden_size=768,
initializer_range=0.02,
intermediate_size=3072,
layer_norm_eps=1e-12,
max_position_embeddings=512,
model_type='bert',
num_attention_heads=12,
num_hidden_layers=12,
pad_token_id=0,
add_type_embeddings=False,
vocab_size=30524,
encoder_width=768,
add_cross_attention=True),
),
vision_neck=dict(
type='Linear',
in_features=768,
out_features=256,
),
text_neck=dict(
type='Linear',
in_features=768,
out_features=256,
),
head=dict(
type='ITCHead',
embed_dim=256,
),
multimodal_head=dict(
type='ITMHead',
hidden_size=768,
with_pooler=False,
),
topk=256,
max_txt_len=35,
)
# optimizer
optimizer = dict(type='AdamW', lr=2e-5, weight_decay=0.04)
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
# learning rate scheduler
param_scheduler = [dict(type='CosineAnnealingLR', by_epoch=True)]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=6)
val_cfg = dict(type='RetrievalValLoop')
test_cfg = dict(type='RetrievalTestLoop')
randomness = dict(seed=42)
default_hooks = dict(logger=dict(interval=1))
custom_hooks = [
dict(
type='WarmupParamHook',
param_name='alpha',
module_name='head',
warmup_epochs=2)
]