mmpretrain/docs/en/user_guides/analysis.md

250 lines
11 KiB
Markdown
Raw Normal View History

# Analysis Tools
<!-- TOC -->
- [Log Analysis](#log-analysis)
- [Plot Curves](#plot-curves)
- [Calculate Training Time](#calculate-training-time)
- [Result Analysis](#result-analysis)
- [Evaluate Results](#evaluate-results)
- [View Typical Results](#view-typical-results)
- [Model Complexity](#model-complexity)
- [FAQs](#faqs)
<!-- TOC -->
## Log Analysis
### Plot Curves
`tools/analysis_tools/analyze_logs.py` plots curves of given keys according to the log files.
<div align=center><img src="../_static/image/tools/analysis/analyze_log.jpg" style=" width: 75%; height: 30%; "></div>
```shell
python tools/analysis_tools/analyze_logs.py plot_curve \
${JSON_LOGS} \
[--keys ${KEYS}] \
[--title ${TITLE}] \
[--legend ${LEGEND}] \
[--backend ${BACKEND}] \
[--style ${STYLE}] \
[--out ${OUT_FILE}] \
[--window-size ${WINDOW_SIZE}]
```
**Description of all arguments**
- `json_logs` : The paths of the log files, separate multiple files by spaces.
- `--keys` : The fields of the logs to analyze, separate multiple keys by spaces. Defaults to 'loss'.
- `--title` : The title of the figure. Defaults to use the filename.
- `--legend` : The names of legend, the number of which must be equal to `len(${JSON_LOGS}) * len(${KEYS})`. Defaults to use `"${JSON_LOG}-${KEYS}"`.
- `--backend` : The backend of matplotlib. Defaults to auto selected by matplotlib.
- `--style` : The style of the figure. Default to `whitegrid`.
- `--out` : The path of the output picture. If not set, the figure won't be saved.
- `--window-size`: The shape of the display window. The format should be `'W*H'`. Defaults to `'12*7'`.
```{note}
The `--style` option depends on `seaborn` package, please install it before setting it.
```
Examples:
- Plot the loss curve in training.
```shell
python tools/analysis_tools/analyze_logs.py plot_curve your_log_json --keys loss --legend loss
```
- Plot the top-1 accuracy and top-5 accuracy curves, and save the figure to results.jpg.
```shell
python tools/analysis_tools/analyze_logs.py plot_curve your_log_json --keys accuracy_top-1 accuracy_top-5 --legend top1 top5 --out results.jpg
```
- Compare the top-1 accuracy of two log files in the same figure.
```shell
python tools/analysis_tools/analyze_logs.py plot_curve log1.json log2.json --keys accuracy_top-1 --legend exp1 exp2
```
```{note}
The tool will automatically select to find keys in training logs or validation logs according to the keys.
Therefore, if you add a custom evaluation metric, please also add the key to `TEST_METRICS` in this tool.
```
### Calculate Training Time
`tools/analysis_tools/analyze_logs.py` can also calculate the training time according to the log files.
```shell
python tools/analysis_tools/analyze_logs.py cal_train_time \
${JSON_LOGS}
[--include-outliers]
```
**Description of all arguments**:
- `json_logs` : The paths of the log files, separate multiple files by spaces.
- `--include-outliers` : If set, include the first iteration in each epoch (Sometimes the time of first iterations is longer).
Example:
```shell
python tools/analysis_tools/analyze_logs.py cal_train_time work_dirs/some_exp/20200422_153324.log.json
```
The output is expected to be like the below.
```text
-----Analyze train time of work_dirs/some_exp/20200422_153324.log.json-----
slowest epoch 68, average time is 0.3818
fastest epoch 1, average time is 0.3694
time std over epochs is 0.0020
average iter time: 0.3777 s/iter
```
## Result Analysis
With the `--out` argument in `tools/test.py`, we can save the inference results of all samples as a file.
And with this result file, we can do further analysis.
### Evaluate Results
`tools/analysis_tools/eval_metric.py` can evaluate metrics again.
```shell
python tools/analysis_tools/eval_metric.py \
${CONFIG} \
${RESULT} \
[--metrics ${METRICS}] \
[--cfg-options ${CFG_OPTIONS}] \
[--metric-options ${METRIC_OPTIONS}]
```
Description of all arguments:
- `config` : The path of the model config file.
- `result`: The Output result file in json/pickle format from `tools/test.py`.
- `--metrics` : Evaluation metrics, the acceptable values depend on the dataset.
- `--cfg-options`: If specified, the key-value pair config will be merged into the config file, for more details please refer to [Tutorial 1: Learn about Configs](../tutorials/config.md)
- `--metric-options`: If specified, the key-value pair arguments will be passed to the `metric_options` argument of dataset's `evaluate` function.
```{note}
In `tools/test.py`, we support using `--out-items` option to select which kind of results will be saved. Please ensure the result file includes "class_scores" to use this tool.
```
**Examples**:
```shell
python tools/analysis_tools/eval_metric.py configs/t2t_vit/t2t-vit-t-14_8xb64_in1k.py your_result.pkl --metrics accuracy --metric-options "topk=(1,5)"
```
### View Typical Results
`tools/analysis_tools/analyze_results.py` can save the images with the highest scores in successful or failed prediction.
```shell
python tools/analysis_tools/analyze_results.py \
${CONFIG} \
${RESULT} \
[--out-dir ${OUT_DIR}] \
[--topk ${TOPK}] \
[--cfg-options ${CFG_OPTIONS}]
```
**Description of all arguments**:
- `config` : The path of the model config file.
- `result`: Output result file in json/pickle format from `tools/test.py`.
- `--out_dir`: Directory to store output files.
- `--topk`: The number of images in successful or failed prediction with the highest `topk` scores to save. If not specified, it will be set to 20.
- `--cfg-options`: If specified, the key-value pair config will be merged into the config file, for more details please refer to [Tutorial 1: Learn about Configs](../tutorials/config.md)
```{note}
In `tools/test.py`, we support using `--out-items` option to select which kind of results will be saved. Please ensure the result file includes "pred_score", "pred_label" and "pred_class" to use this tool.
```
**Examples**:
```shell
python tools/analysis_tools/analyze_results.py \
configs/resnet/resnet50_b32x8_imagenet.py \
result.pkl \
--out_dir results \
--topk 50
```
## Model Complexity
### Get the FLOPs and params (experimental)
We provide a script adapted from [fvcore](https://github.com/facebookresearch/fvcore/blob/main/fvcore/nn/flop_count.py) to compute the FLOPs and params of a given model.
```shell
python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]
```
Description of all arguments:
- `config` : The path of the model config file.
- `--shape`: Input size, support single value or double value parameter, such as `--shape 256` or `--shape 224 256`. If not set, default to be `224 224`.
You will get the final result like this.
```text
==============================
Input shape: (3, 224, 224)
Flops: 17.582G
Params: 91.234M
Activation: 23.895M
==============================
```
Also, you will get the detailed complexity information of each layer like this:
```text
| module | #parameters or shape | #flops | #activations |
|:------------------------------------------|:-----------------------|:----------|:---------------|
| model | 91.234M | 17.582G | 23.895M |
| backbone | 85.799M | 17.582G | 23.895M |
| backbone.cls_token | (1, 1, 768) | | |
| backbone.pos_embed | (1, 197, 768) | | |
| backbone.patch_embed.projection | 0.591M | 0.116G | 0.151M |
| backbone.patch_embed.projection.weight | (768, 3, 16, 16) | | |
| backbone.patch_embed.projection.bias | (768,) | | |
| backbone.layers | 85.054M | 17.466G | 23.744M |
| backbone.layers.0 | 7.088M | 1.455G | 1.979M |
| backbone.layers.1 | 7.088M | 1.455G | 1.979M |
| backbone.layers.2 | 7.088M | 1.455G | 1.979M |
| backbone.layers.3 | 7.088M | 1.455G | 1.979M |
| backbone.layers.4 | 7.088M | 1.455G | 1.979M |
| backbone.layers.5 | 7.088M | 1.455G | 1.979M |
| backbone.layers.6 | 7.088M | 1.455G | 1.979M |
| backbone.layers.7 | 7.088M | 1.455G | 1.979M |
| backbone.layers.8 | 7.088M | 1.455G | 1.979M |
| backbone.layers.9 | 7.088M | 1.455G | 1.979M |
| backbone.layers.10 | 7.088M | 1.455G | 1.979M |
| backbone.layers.11 | 7.088M | 1.455G | 1.979M |
| backbone.ln1 | 1.536K | 0.756M | 0 |
| backbone.ln1.weight | (768,) | | |
| backbone.ln1.bias | (768,) | | |
| head.layers | 5.435M | | |
| head.layers.pre_logits | 2.362M | | |
| head.layers.pre_logits.weight | (3072, 768) | | |
| head.layers.pre_logits.bias | (3072,) | | |
| head.layers.head | 3.073M | | |
| head.layers.head.weight | (1000, 3072) | | |
| head.layers.head.bias | (1000,) | | |
```
```{warning}
This tool is still experimental and we do not guarantee that the number is correct. You may well use the result for simple comparisons, but double-check it before you adopt it in technical reports or papers.
- FLOPs are related to the input shape while parameters are not. The default input shape is (1, 3, 224, 224).
- Some operators are not counted into FLOPs like custom operators. Refer to [`fvcore.nn.flop_count._DEFAULT_SUPPORTED_OPS`](https://github.com/facebookresearch/fvcore/blob/main/fvcore/nn/flop_count.py) for details.
```
## FAQs
- None