mmpretrain/configs/efficientnet_v2/metafile.yml

256 lines
12 KiB
YAML
Raw Normal View History

[Feature] [CodeCamp #68] Add EfficientnetV2 Backbone. (#1253) * add efficientnet_v2.py * add efficientnet_v2 in __init__.py * add efficientnet_v2_s base config file * add efficientnet_v2 config file * add efficientnet_v2 config file * update tuple output * update config file * update model file * update model file * update model file * update config file * update model file * update config file * update model file * update model file * update model file * update model file * update model file * update config file * update config file * update model file * update model file * update model file * update model file * update model config file * Update efficientnet_v2.py * add config file and modify arch * add config file and modify arch * add the file about convert_pth from timm to mmcls * update efficientnetv2 model file with mmcls style * add the file about convert_pth from timm to mmcls * add the file about convert_pth from timm to mmcls * update convert file * update model file * update convert file * update model file * update model file * update model file * add metefile and README * Update tools/model_converters/efficientnetv2-timm_to_mmcls.py Co-authored-by: Ezra-Yu <18586273+Ezra-Yu@users.noreply.github.com> * update model file and convert file * update model file and convert file * update model file and convert file * update model file and convert file * update model file * update model file * update model file * update config file and README file * update metafile * Update efficientnetv2_to_mmcls.py * update model-index.yml * update metafile.yml * update b0 and s train pipeline * update b0 and s train pipeline * update b0 and s train pipeline * add test_efficientnet_v2 * update test_efficientnet_v2 * update model file docs * update test_efficientnet_v2 * update test_efficientnet_v2 * add efficientnet_v2.py * add efficientnet_v2 in __init__.py * add efficientnet_v2_s base config file * add efficientnet_v2 config file * add efficientnet_v2 config file * update tuple output * update config file * update model file * update model file * update model file * update model file * update config file * update config file * update model file * update model file * update model file * update model file * update model file * update config file * update config file * update model file * update model file * update model file * update model file * update model config file * Update efficientnet_v2.py * add config file and modify arch * add config file and modify arch * add the file about convert_pth from timm to mmcls * update efficientnetv2 model file with mmcls style * add the file about convert_pth from timm to mmcls * add the file about convert_pth from timm to mmcls * update convert file * update model file * update convert file * update model file * update model file * update model file * add metefile and README * Update tools/model_converters/efficientnetv2-timm_to_mmcls.py Co-authored-by: Ezra-Yu <18586273+Ezra-Yu@users.noreply.github.com> * update model file and convert file * update model file and convert file * update model file and convert file * update model file and convert file * update model file * update model file * update model file * update config file and README file * update metafile * Update efficientnetv2_to_mmcls.py * update model-index.yml * update metafile.yml * update b0 and s train pipeline * update b0 and s train pipeline * update b0 and s train pipeline * add test_efficientnet_v2 * update test_efficientnet_v2 * update model file docs * update test_efficientnet_v2 * update test_efficientnet_v2 * pass pre-commit hook * refactor efficientnetv2 * refactor efficientnetv2 * update readme, metafile and weight links * update model-index.yml * fix lint * fix typo * Update efficientnetv2-b1_8xb32_in1k.py * Update efficientnetv2-b2_8xb32_in1k.py * Update efficientnetv2-b3_8xb32_in1k.py * update two moduals and model file * update modual file * update accuracys * update accuracys * update metafile * fix build docs * update links * update README.md Co-authored-by: qingtian <459291290@qq.com> Co-authored-by: Ezra-Yu <18586273+Ezra-Yu@users.noreply.github.com>
2022-12-30 15:18:39 +08:00
Collections:
- Name: EfficientNetV2
Metadata:
Training Data: ImageNet-1k
Architecture:
- 1x1 Convolution
- Average Pooling
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- RMSProp
- Squeeze-and-Excitation Block
- Swish
Paper:
URL: https://arxiv.org/abs/2104.00298
Title: "EfficientNetV2: Smaller Models and Faster Training"
README: configs/efficientnet_v2/README.md
Code:
URL: https://github.com/open-mmlab/mmpretrain/blob/main/mmpretrain/models/backbones/beit.py
[Feature] [CodeCamp #68] Add EfficientnetV2 Backbone. (#1253) * add efficientnet_v2.py * add efficientnet_v2 in __init__.py * add efficientnet_v2_s base config file * add efficientnet_v2 config file * add efficientnet_v2 config file * update tuple output * update config file * update model file * update model file * update model file * update config file * update model file * update config file * update model file * update model file * update model file * update model file * update model file * update config file * update config file * update model file * update model file * update model file * update model file * update model config file * Update efficientnet_v2.py * add config file and modify arch * add config file and modify arch * add the file about convert_pth from timm to mmcls * update efficientnetv2 model file with mmcls style * add the file about convert_pth from timm to mmcls * add the file about convert_pth from timm to mmcls * update convert file * update model file * update convert file * update model file * update model file * update model file * add metefile and README * Update tools/model_converters/efficientnetv2-timm_to_mmcls.py Co-authored-by: Ezra-Yu <18586273+Ezra-Yu@users.noreply.github.com> * update model file and convert file * update model file and convert file * update model file and convert file * update model file and convert file * update model file * update model file * update model file * update config file and README file * update metafile * Update efficientnetv2_to_mmcls.py * update model-index.yml * update metafile.yml * update b0 and s train pipeline * update b0 and s train pipeline * update b0 and s train pipeline * add test_efficientnet_v2 * update test_efficientnet_v2 * update model file docs * update test_efficientnet_v2 * update test_efficientnet_v2 * add efficientnet_v2.py * add efficientnet_v2 in __init__.py * add efficientnet_v2_s base config file * add efficientnet_v2 config file * add efficientnet_v2 config file * update tuple output * update config file * update model file * update model file * update model file * update model file * update config file * update config file * update model file * update model file * update model file * update model file * update model file * update config file * update config file * update model file * update model file * update model file * update model file * update model config file * Update efficientnet_v2.py * add config file and modify arch * add config file and modify arch * add the file about convert_pth from timm to mmcls * update efficientnetv2 model file with mmcls style * add the file about convert_pth from timm to mmcls * add the file about convert_pth from timm to mmcls * update convert file * update model file * update convert file * update model file * update model file * update model file * add metefile and README * Update tools/model_converters/efficientnetv2-timm_to_mmcls.py Co-authored-by: Ezra-Yu <18586273+Ezra-Yu@users.noreply.github.com> * update model file and convert file * update model file and convert file * update model file and convert file * update model file and convert file * update model file * update model file * update model file * update config file and README file * update metafile * Update efficientnetv2_to_mmcls.py * update model-index.yml * update metafile.yml * update b0 and s train pipeline * update b0 and s train pipeline * update b0 and s train pipeline * add test_efficientnet_v2 * update test_efficientnet_v2 * update model file docs * update test_efficientnet_v2 * update test_efficientnet_v2 * pass pre-commit hook * refactor efficientnetv2 * refactor efficientnetv2 * update readme, metafile and weight links * update model-index.yml * fix lint * fix typo * Update efficientnetv2-b1_8xb32_in1k.py * Update efficientnetv2-b2_8xb32_in1k.py * Update efficientnetv2-b3_8xb32_in1k.py * update two moduals and model file * update modual file * update accuracys * update accuracys * update metafile * fix build docs * update links * update README.md Co-authored-by: qingtian <459291290@qq.com> Co-authored-by: Ezra-Yu <18586273+Ezra-Yu@users.noreply.github.com>
2022-12-30 15:18:39 +08:00
Version: v1.0.0rc4
Models:
- Name: efficientnetv2-b0_3rdparty_in1k
Metadata:
FLOPs: 919843360
Parameters: 7139704
In Collection: EfficientNetV2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.52
Top 5 Accuracy: 94.44
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/efficientnetv2/efficientnetv2-b0_3rdparty_in1k_20221221-9ef6e736.pth
Config: configs/efficientnet_v2/efficientnetv2-b0_8xb32_in1k.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b0-c7cc451f.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/efficientnet.py
- Name: efficientnetv2-b1_3rdparty_in1k
Metadata:
FLOPs: 1438287552
Parameters: 8141052
In Collection: EfficientNetV2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 79.80
Top 5 Accuracy: 94.89
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/efficientnetv2/efficientnetv2-b1_3rdparty_in1k_20221221-6955d9ce.pth
Config: configs/efficientnet_v2/efficientnetv2-b1_8xb32_in1k.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b1-be6e41b0.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/efficientnet.py
- Name: efficientnetv2-b2_3rdparty_in1k
Metadata:
FLOPs: 1986433080
Parameters: 10096086
In Collection: EfficientNetV2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 80.63
Top 5 Accuracy: 95.30
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/efficientnetv2/efficientnetv2-b2_3rdparty_in1k_20221221-74f7d493.pth
Config: configs/efficientnet_v2/efficientnetv2-b2_8xb32_in1k.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b2-847de54e.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/efficientnet.py
- Name: efficientnetv2-b3_3rdparty_in1k
Metadata:
FLOPs: 3498068400
Parameters: 14358406
In Collection: EfficientNetV2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 82.03
Top 5 Accuracy: 95.88
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/efficientnetv2/efficientnetv2-b3_3rdparty_in1k_20221221-b6f07a36.pth
Config: configs/efficientnet_v2/efficientnetv2-b3_8xb32_in1k.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b3-57773f13.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/efficientnet.py
- Name: efficientnetv2-s_3rdparty_in1k
Metadata:
FLOPs: 9719420928
Parameters: 21458488
In Collection: EfficientNetV2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.82
Top 5 Accuracy: 96.67
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/efficientnetv2/efficientnetv2-s_3rdparty_in1k_20221220-f0eaff9d.pth
Config: configs/efficientnet_v2/efficientnetv2-s_8xb32_in1k-384px.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s-eb54923e.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/efficientnet.py
- Name: efficientnetv2-m_3rdparty_in1k
Metadata:
FLOPs: 26880363584
Parameters: 54139356
In Collection: EfficientNetV2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.01
Top 5 Accuracy: 97.26
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/efficientnetv2/efficientnetv2-m_3rdparty_in1k_20221220-9dc0c729.pth
Config: configs/efficientnet_v2/efficientnetv2-m_8xb32_in1k-480px.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m-cc09e0cd.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/efficientnet.py
- Name: efficientnetv2-l_3rdparty_in1k
Metadata:
FLOPs: 60142387008
Parameters: 118515272
In Collection: EfficientNetV2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.43
Top 5 Accuracy: 97.31
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/efficientnetv2/efficientnetv2-l_3rdparty_in1k_20221220-5c3bac0f.pth
Config: configs/efficientnet_v2/efficientnetv2-l_8xb32_in1k-480px.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l-d664b728.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/efficientnet.py
- Name: efficientnetv2-s_in21k-pre_3rdparty_in1k
Metadata:
Training Data:
- ImageNet-21k
- ImageNet-1k
FLOPs: 9719420928
Parameters: 21458488
In Collection: EfficientNetV2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 84.29
Top 5 Accuracy: 97.26
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/efficientnetv2/efficientnetv2-s_in21k-pre-3rdparty_in1k_20221220-7a7c8475.pth
Config: configs/efficientnet_v2/efficientnetv2-s_8xb32_in1k-384px.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21ft1k-d7dafa41.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/efficientnet.py
- Name: efficientnetv2-m_in21k-pre_3rdparty_in1k
Metadata:
Training Data:
- ImageNet-21k
- ImageNet-1k
FLOPs: 26880363584
Parameters: 54139356
In Collection: EfficientNetV2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.47
Top 5 Accuracy: 97.76
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/efficientnetv2/efficientnetv2-m_in21k-pre-3rdparty_in1k_20221220-a1013a04.pth
Config: configs/efficientnet_v2/efficientnetv2-m_8xb32_in1k-480px.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21ft1k-bf41664a.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/efficientnet.py
- Name: efficientnetv2-l_in21k-pre_3rdparty_in1k
Metadata:
Training Data:
- ImageNet-21k
- ImageNet-1k
FLOPs: 60142387008
Parameters: 118515272
In Collection: EfficientNetV2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 86.31
Top 5 Accuracy: 97.99
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/efficientnetv2/efficientnetv2-l_in21k-pre-3rdparty_in1k_20221220-63df0efd.pth
Config: configs/efficientnet_v2/efficientnetv2-l_8xb32_in1k-480px.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21ft1k-60127a9d.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/efficientnet.py
- Name: efficientnetv2-xl_in21k-pre_3rdparty_in1k
Metadata:
Training Data:
- ImageNet-21k
- ImageNet-1k
FLOPs: 98341230592
Parameters: 208119808
In Collection: EfficientNetV2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 86.39
Top 5 Accuracy: 97.83
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/efficientnetv2/efficientnetv2-xl_in21k-pre-3rdparty_in1k_20221220-583ac18b.pth
Config: configs/efficientnet_v2/efficientnetv2-xl_8xb32_in1k-512px.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_xl_in21ft1k-06c35c48.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/efficientnet.py
- Name: efficientnetv2-s_3rdparty_in21k
Metadata:
FLOPs: 3309720768
Parameters: 48158371
In Collection: EfficientNetV2
Results: null
Weights: https://download.openmmlab.com/mmclassification/v0/efficientnetv2/efficientnetv2-s_3rdparty_in21k_20221220-c0572b56.pth
Config: configs/efficientnet_v2/efficientnetv2-s_8xb32_in21k.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21k-6337ad01.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/efficientnet.py
- Name: efficientnetv2-m_3rdparty_in21k
Metadata:
FLOPs: 5861638208
Parameters: 80839239
In Collection: EfficientNetV2
Results: null
Weights: https://download.openmmlab.com/mmclassification/v0/efficientnetv2/efficientnetv2-m_3rdparty_in21k_20221220-073e944c.pth
Config: configs/efficientnet_v2/efficientnetv2-m_8xb32_in21k.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21k-361418a2.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/efficientnet.py
- Name: efficientnetv2-l_3rdparty_in21k
Metadata:
FLOPs: 13114950464
Parameters: 145215155
In Collection: EfficientNetV2
Results: null
Weights: https://download.openmmlab.com/mmclassification/v0/efficientnetv2/efficientnetv2-l_3rdparty_in21k_20221220-f28f91e1.pth
Config: configs/efficientnet_v2/efficientnetv2-l_8xb32_in21k.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21k-91a19ec9.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/efficientnet.py
- Name: efficientnetv2-xl_3rdparty_in21k
Metadata:
FLOPs: 18855244288
Parameters: 234819691
In Collection: EfficientNetV2
Results: null
Weights: https://download.openmmlab.com/mmclassification/v0/efficientnetv2/efficientnetv2-xl_3rdparty_in21k_20221220-b2c9329c.pth
Config: configs/efficientnet_v2/efficientnetv2-xl_8xb32_in21k.py
Converted From:
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_xl_in21k-fd7e8abf.pth
Code: https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/efficientnet.py