75 lines
2.0 KiB
Python
75 lines
2.0 KiB
Python
|
_base_ = [
|
||
|
'../../_base_/datasets/imagenet_bs32_pil_resize.py',
|
||
|
'../../_base_/schedules/imagenet_bs1024_adamw_swin.py',
|
||
|
'../../_base_/default_runtime.py'
|
||
|
]
|
||
|
|
||
|
train_pipeline = [
|
||
|
dict(type='LoadImageFromFile'),
|
||
|
dict(type='ToPIL', to_rgb=True),
|
||
|
dict(type='MAERandomResizedCrop', size=224, interpolation=3),
|
||
|
dict(type='torchvision/RandomHorizontalFlip', p=0.5),
|
||
|
dict(type='ToNumpy', to_bgr=True),
|
||
|
dict(type='PackInputs'),
|
||
|
]
|
||
|
|
||
|
# dataset settings
|
||
|
train_dataloader = dict(
|
||
|
batch_size=2048, drop_last=True, dataset=dict(pipeline=train_pipeline))
|
||
|
val_dataloader = dict(drop_last=False)
|
||
|
test_dataloader = dict(drop_last=False)
|
||
|
|
||
|
# model settings
|
||
|
model = dict(
|
||
|
type='ImageClassifier',
|
||
|
backbone=dict(
|
||
|
type='VisionTransformer',
|
||
|
arch='base',
|
||
|
img_size=224,
|
||
|
patch_size=16,
|
||
|
frozen_stages=12,
|
||
|
out_type='cls_token',
|
||
|
final_norm=True,
|
||
|
init_cfg=dict(type='Pretrained', prefix='backbone.')),
|
||
|
neck=dict(type='ClsBatchNormNeck', input_features=768),
|
||
|
head=dict(
|
||
|
type='VisionTransformerClsHead',
|
||
|
num_classes=1000,
|
||
|
in_channels=768,
|
||
|
loss=dict(type='CrossEntropyLoss'),
|
||
|
init_cfg=[dict(type='TruncNormal', layer='Linear', std=0.01)]))
|
||
|
|
||
|
# optimizer
|
||
|
optim_wrapper = dict(
|
||
|
_delete_=True,
|
||
|
type='AmpOptimWrapper',
|
||
|
optimizer=dict(type='LARS', lr=6.4, weight_decay=0.0, momentum=0.9))
|
||
|
|
||
|
# learning rate scheduler
|
||
|
param_scheduler = [
|
||
|
dict(
|
||
|
type='LinearLR',
|
||
|
start_factor=1e-4,
|
||
|
by_epoch=True,
|
||
|
begin=0,
|
||
|
end=10,
|
||
|
convert_to_iter_based=True),
|
||
|
dict(
|
||
|
type='CosineAnnealingLR',
|
||
|
T_max=80,
|
||
|
by_epoch=True,
|
||
|
begin=10,
|
||
|
end=90,
|
||
|
eta_min=0.0,
|
||
|
convert_to_iter_based=True)
|
||
|
]
|
||
|
|
||
|
# runtime settings
|
||
|
train_cfg = dict(by_epoch=True, max_epochs=90)
|
||
|
|
||
|
default_hooks = dict(
|
||
|
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=1),
|
||
|
logger=dict(type='LoggerHook', interval=10))
|
||
|
|
||
|
randomness = dict(seed=0, diff_rank_seed=True)
|