update test
parent
e6987f1c3b
commit
0667136f05
|
@ -2,8 +2,8 @@ import logging
|
|||
|
||||
import torch.nn as nn
|
||||
import torch.utils.checkpoint as cp
|
||||
|
||||
from ..runner import load_checkpoint
|
||||
from mmcv.runner import load_checkpoint
|
||||
t
|
||||
from .base_backbone import BaseBackbone
|
||||
from .weight_init import constant_init, kaiming_init
|
||||
|
||||
|
@ -154,7 +154,7 @@ class MobileNetv2(BaseBackbone):
|
|||
def __init__(self,
|
||||
widen_factor=1.,
|
||||
activation=nn.ReLU6,
|
||||
out_indices=(0, 1, 2, 3, 4, 5, 6),
|
||||
out_indices=(0, 1, 2, 3, 4, 5, 6, 7),
|
||||
frozen_stages=-1,
|
||||
bn_eval=True,
|
||||
bn_frozen=False,
|
||||
|
@ -177,6 +177,7 @@ class MobileNetv2(BaseBackbone):
|
|||
self.activation = activation(inplace=True)
|
||||
|
||||
self.out_indices = out_indices
|
||||
assert frozen_stages <= 7
|
||||
self.frozen_stages = frozen_stages
|
||||
self.bn_eval = bn_eval
|
||||
self.bn_frozen = bn_frozen
|
||||
|
|
|
@ -1,11 +1,128 @@
|
|||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.modules import GroupNorm
|
||||
from torch.nn.modules.batchnorm import _BatchNorm
|
||||
|
||||
from mmcls.models.backbones import MobileNetv2
|
||||
from mmcls.models.backbones.mobilenet_v2 import InvertedResidual
|
||||
|
||||
|
||||
def is_block(modules):
|
||||
"""Check if is ResNet building block."""
|
||||
if isinstance(modules, (InvertedResidual,)):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def is_norm(modules):
|
||||
"""Check if is one of the norms."""
|
||||
if isinstance(modules, (GroupNorm, _BatchNorm)):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def check_norm_state(modules, train_state):
|
||||
"""Check if norm layer is in correct train state."""
|
||||
for mod in modules:
|
||||
if isinstance(mod, _BatchNorm):
|
||||
if mod.training != train_state:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def test_mobilenetv2_invertedresidual():
|
||||
|
||||
with pytest.raises(AssertionError):
|
||||
# stride must be in [1, 2]
|
||||
InvertedResidual(64, 16,
|
||||
stride=3, expand_ratio=6)
|
||||
|
||||
# Test InvertedResidual with checkpoint forward, stride=1
|
||||
block = InvertedResidual(64, 16,
|
||||
stride=1,
|
||||
expand_ratio=6)
|
||||
x = torch.randn(1, 64, 56, 56)
|
||||
x_out = block(x)
|
||||
assert x_out.shape == torch.Size([1, 16, 56, 56])
|
||||
|
||||
# Test InvertedResidual with checkpoint forward, stride=2
|
||||
block = InvertedResidual(64, 16,
|
||||
stride=2,
|
||||
expand_ratio=6)
|
||||
x = torch.randn(1, 64, 56, 56)
|
||||
x_out = block(x)
|
||||
assert x_out.shape == torch.Size([1, 16, 28, 28])
|
||||
|
||||
# Test InvertedResidual with checkpoint forward
|
||||
block = InvertedResidual(64, 16,
|
||||
stride=1,
|
||||
expand_ratio=6,
|
||||
with_cp=True)
|
||||
assert block.with_cp
|
||||
x = torch.randn(1, 64, 56, 56)
|
||||
x_out = block(x)
|
||||
assert x_out.shape == torch.Size([1, 16, 56, 56])
|
||||
|
||||
# Test InvertedResidual with activation=nn.ReLU
|
||||
block = InvertedResidual(64, 16,
|
||||
stride=1,
|
||||
expand_ratio=6,
|
||||
activation=nn.ReLU)
|
||||
x = torch.randn(1, 64, 56, 56)
|
||||
x_out = block(x)
|
||||
assert x_out.shape == torch.Size([1, 16, 56, 56])
|
||||
|
||||
|
||||
def test_mobilenetv2_backbone():
|
||||
# Test MobileNetv2 with widen_factor 1.0, activation nn.ReLU6
|
||||
with pytest.raises(TypeError):
|
||||
# pretrained must be a string path
|
||||
model = MobileNetv2()
|
||||
model.init_weights(pretrained=0)
|
||||
|
||||
with pytest.raises(AssertionError):
|
||||
# frozen_stages must less than 7
|
||||
MobileNetv2(frozen_stages=8)
|
||||
|
||||
# Test MobileNetv2
|
||||
model = MobileNetv2()
|
||||
model.init_weights()
|
||||
model.train()
|
||||
assert check_norm_state(model.modules(), False)
|
||||
|
||||
# Test MobileNetv2 with first stage frozen
|
||||
frozen_stages = 1
|
||||
model = MobileNetv2(frozen_stages=frozen_stages)
|
||||
model.init_weights()
|
||||
model.train()
|
||||
assert model.bn1.training is False
|
||||
for layer in [model.conv1, model.bn1]:
|
||||
for param in layer.parameters():
|
||||
assert param.requires_grad is False
|
||||
for i in range(1, frozen_stages + 1):
|
||||
layer = getattr(model, f'layer{i}')
|
||||
for mod in layer.modules():
|
||||
if isinstance(mod, _BatchNorm):
|
||||
assert mod.training is False
|
||||
for param in layer.parameters():
|
||||
assert param.requires_grad is False
|
||||
|
||||
# Test MobileNetv2 with first stage frozen
|
||||
model = MobileNetv2(bn_frozen=True)
|
||||
model.init_weights()
|
||||
model.train()
|
||||
assert model.bn1.training is False
|
||||
|
||||
for i in range(1, 8):
|
||||
layer = getattr(model, f'layer{i}')
|
||||
|
||||
for mod in layer.modules():
|
||||
if isinstance(mod, _BatchNorm):
|
||||
assert mod.training is False
|
||||
for params in mod.parameters():
|
||||
params.requires_grad = False
|
||||
|
||||
# Test MobileNetv2 forward with widen_factor=1.0
|
||||
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6)
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
@ -20,3 +137,90 @@ def test_mobilenetv2_backbone():
|
|||
assert feat[4].shape == torch.Size([1, 96, 14, 14])
|
||||
assert feat[5].shape == torch.Size([1, 160, 7, 7])
|
||||
assert feat[6].shape == torch.Size([1, 320, 7, 7])
|
||||
|
||||
# Test MobileNetv2 forward with activation=nn.ReLU
|
||||
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU)
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 224, 224)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 8
|
||||
assert feat[0].shape == torch.Size([1, 16, 112, 112])
|
||||
assert feat[1].shape == torch.Size([1, 24, 56, 56])
|
||||
assert feat[2].shape == torch.Size([1, 32, 28, 28])
|
||||
assert feat[3].shape == torch.Size([1, 64, 14, 14])
|
||||
assert feat[4].shape == torch.Size([1, 96, 14, 14])
|
||||
assert feat[5].shape == torch.Size([1, 160, 7, 7])
|
||||
assert feat[6].shape == torch.Size([1, 320, 7, 7])
|
||||
|
||||
# Test MobileNetv2 with BatchNorm forward
|
||||
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6)
|
||||
for m in model.modules():
|
||||
if is_norm(m):
|
||||
assert isinstance(m, _BatchNorm)
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 224, 224)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 8
|
||||
assert feat[0].shape == torch.Size([1, 16, 112, 112])
|
||||
assert feat[1].shape == torch.Size([1, 24, 56, 56])
|
||||
assert feat[2].shape == torch.Size([1, 32, 28, 28])
|
||||
assert feat[3].shape == torch.Size([1, 64, 14, 14])
|
||||
assert feat[4].shape == torch.Size([1, 96, 14, 14])
|
||||
assert feat[5].shape == torch.Size([1, 160, 7, 7])
|
||||
assert feat[6].shape == torch.Size([1, 320, 7, 7])
|
||||
|
||||
# Test MobileNetv2 with BatchNorm forward
|
||||
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6)
|
||||
for m in model.modules():
|
||||
if is_norm(m):
|
||||
assert isinstance(m, _BatchNorm)
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 224, 224)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 8
|
||||
assert feat[0].shape == torch.Size([1, 16, 112, 112])
|
||||
assert feat[1].shape == torch.Size([1, 24, 56, 56])
|
||||
assert feat[2].shape == torch.Size([1, 32, 28, 28])
|
||||
assert feat[3].shape == torch.Size([1, 64, 14, 14])
|
||||
assert feat[4].shape == torch.Size([1, 96, 14, 14])
|
||||
assert feat[5].shape == torch.Size([1, 160, 7, 7])
|
||||
assert feat[6].shape == torch.Size([1, 320, 7, 7])
|
||||
|
||||
# Test MobileNetv2 with layers 1, 3, 5 out forward
|
||||
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6,
|
||||
out_indices=(0, 2, 4))
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 224, 224)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 4
|
||||
assert feat[0].shape == torch.Size([1, 16, 112, 112])
|
||||
assert feat[1].shape == torch.Size([1, 32, 28, 28])
|
||||
assert feat[2].shape == torch.Size([1, 96, 14, 14])
|
||||
|
||||
# Test MobileNetv2 with checkpoint forward
|
||||
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6,
|
||||
with_cp=True)
|
||||
for m in model.modules():
|
||||
if is_block(m):
|
||||
assert m.with_cp
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 224, 224)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 8
|
||||
assert feat[0].shape == torch.Size([1, 16, 112, 112])
|
||||
assert feat[1].shape == torch.Size([1, 24, 56, 56])
|
||||
assert feat[2].shape == torch.Size([1, 32, 28, 28])
|
||||
assert feat[3].shape == torch.Size([1, 64, 14, 14])
|
||||
assert feat[4].shape == torch.Size([1, 96, 14, 14])
|
||||
assert feat[5].shape == torch.Size([1, 160, 7, 7])
|
||||
assert feat[6].shape == torch.Size([1, 320, 7, 7])
|
||||
|
|
Loading…
Reference in New Issue