update test

pull/2/head
lixiaojie 2020-06-04 02:22:53 +08:00
parent e6987f1c3b
commit 0667136f05
2 changed files with 209 additions and 4 deletions

View File

@ -2,8 +2,8 @@ import logging
import torch.nn as nn
import torch.utils.checkpoint as cp
from ..runner import load_checkpoint
from mmcv.runner import load_checkpoint
t
from .base_backbone import BaseBackbone
from .weight_init import constant_init, kaiming_init
@ -154,7 +154,7 @@ class MobileNetv2(BaseBackbone):
def __init__(self,
widen_factor=1.,
activation=nn.ReLU6,
out_indices=(0, 1, 2, 3, 4, 5, 6),
out_indices=(0, 1, 2, 3, 4, 5, 6, 7),
frozen_stages=-1,
bn_eval=True,
bn_frozen=False,
@ -177,6 +177,7 @@ class MobileNetv2(BaseBackbone):
self.activation = activation(inplace=True)
self.out_indices = out_indices
assert frozen_stages <= 7
self.frozen_stages = frozen_stages
self.bn_eval = bn_eval
self.bn_frozen = bn_frozen

View File

@ -1,11 +1,128 @@
import pytest
import torch
import torch.nn as nn
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import MobileNetv2
from mmcls.models.backbones.mobilenet_v2 import InvertedResidual
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (InvertedResidual,)):
return True
return False
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_mobilenetv2_invertedresidual():
with pytest.raises(AssertionError):
# stride must be in [1, 2]
InvertedResidual(64, 16,
stride=3, expand_ratio=6)
# Test InvertedResidual with checkpoint forward, stride=1
block = InvertedResidual(64, 16,
stride=1,
expand_ratio=6)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 16, 56, 56])
# Test InvertedResidual with checkpoint forward, stride=2
block = InvertedResidual(64, 16,
stride=2,
expand_ratio=6)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 16, 28, 28])
# Test InvertedResidual with checkpoint forward
block = InvertedResidual(64, 16,
stride=1,
expand_ratio=6,
with_cp=True)
assert block.with_cp
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 16, 56, 56])
# Test InvertedResidual with activation=nn.ReLU
block = InvertedResidual(64, 16,
stride=1,
expand_ratio=6,
activation=nn.ReLU)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 16, 56, 56])
def test_mobilenetv2_backbone():
# Test MobileNetv2 with widen_factor 1.0, activation nn.ReLU6
with pytest.raises(TypeError):
# pretrained must be a string path
model = MobileNetv2()
model.init_weights(pretrained=0)
with pytest.raises(AssertionError):
# frozen_stages must less than 7
MobileNetv2(frozen_stages=8)
# Test MobileNetv2
model = MobileNetv2()
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test MobileNetv2 with first stage frozen
frozen_stages = 1
model = MobileNetv2(frozen_stages=frozen_stages)
model.init_weights()
model.train()
assert model.bn1.training is False
for layer in [model.conv1, model.bn1]:
for param in layer.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test MobileNetv2 with first stage frozen
model = MobileNetv2(bn_frozen=True)
model.init_weights()
model.train()
assert model.bn1.training is False
for i in range(1, 8):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for params in mod.parameters():
params.requires_grad = False
# Test MobileNetv2 forward with widen_factor=1.0
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6)
model.init_weights()
model.train()
@ -20,3 +137,90 @@ def test_mobilenetv2_backbone():
assert feat[4].shape == torch.Size([1, 96, 14, 14])
assert feat[5].shape == torch.Size([1, 160, 7, 7])
assert feat[6].shape == torch.Size([1, 320, 7, 7])
# Test MobileNetv2 forward with activation=nn.ReLU
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 8
assert feat[0].shape == torch.Size([1, 16, 112, 112])
assert feat[1].shape == torch.Size([1, 24, 56, 56])
assert feat[2].shape == torch.Size([1, 32, 28, 28])
assert feat[3].shape == torch.Size([1, 64, 14, 14])
assert feat[4].shape == torch.Size([1, 96, 14, 14])
assert feat[5].shape == torch.Size([1, 160, 7, 7])
assert feat[6].shape == torch.Size([1, 320, 7, 7])
# Test MobileNetv2 with BatchNorm forward
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6)
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 8
assert feat[0].shape == torch.Size([1, 16, 112, 112])
assert feat[1].shape == torch.Size([1, 24, 56, 56])
assert feat[2].shape == torch.Size([1, 32, 28, 28])
assert feat[3].shape == torch.Size([1, 64, 14, 14])
assert feat[4].shape == torch.Size([1, 96, 14, 14])
assert feat[5].shape == torch.Size([1, 160, 7, 7])
assert feat[6].shape == torch.Size([1, 320, 7, 7])
# Test MobileNetv2 with BatchNorm forward
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6)
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 8
assert feat[0].shape == torch.Size([1, 16, 112, 112])
assert feat[1].shape == torch.Size([1, 24, 56, 56])
assert feat[2].shape == torch.Size([1, 32, 28, 28])
assert feat[3].shape == torch.Size([1, 64, 14, 14])
assert feat[4].shape == torch.Size([1, 96, 14, 14])
assert feat[5].shape == torch.Size([1, 160, 7, 7])
assert feat[6].shape == torch.Size([1, 320, 7, 7])
# Test MobileNetv2 with layers 1, 3, 5 out forward
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6,
out_indices=(0, 2, 4))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 16, 112, 112])
assert feat[1].shape == torch.Size([1, 32, 28, 28])
assert feat[2].shape == torch.Size([1, 96, 14, 14])
# Test MobileNetv2 with checkpoint forward
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6,
with_cp=True)
for m in model.modules():
if is_block(m):
assert m.with_cp
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 8
assert feat[0].shape == torch.Size([1, 16, 112, 112])
assert feat[1].shape == torch.Size([1, 24, 56, 56])
assert feat[2].shape == torch.Size([1, 32, 28, 28])
assert feat[3].shape == torch.Size([1, 64, 14, 14])
assert feat[4].shape == torch.Size([1, 96, 14, 14])
assert feat[5].shape == torch.Size([1, 160, 7, 7])
assert feat[6].shape == torch.Size([1, 320, 7, 7])