mirror of
https://github.com/open-mmlab/mmpretrain.git
synced 2025-06-03 14:59:18 +08:00
update test
This commit is contained in:
parent
e6987f1c3b
commit
0667136f05
@ -2,8 +2,8 @@ import logging
|
|||||||
|
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.utils.checkpoint as cp
|
import torch.utils.checkpoint as cp
|
||||||
|
from mmcv.runner import load_checkpoint
|
||||||
from ..runner import load_checkpoint
|
t
|
||||||
from .base_backbone import BaseBackbone
|
from .base_backbone import BaseBackbone
|
||||||
from .weight_init import constant_init, kaiming_init
|
from .weight_init import constant_init, kaiming_init
|
||||||
|
|
||||||
@ -154,7 +154,7 @@ class MobileNetv2(BaseBackbone):
|
|||||||
def __init__(self,
|
def __init__(self,
|
||||||
widen_factor=1.,
|
widen_factor=1.,
|
||||||
activation=nn.ReLU6,
|
activation=nn.ReLU6,
|
||||||
out_indices=(0, 1, 2, 3, 4, 5, 6),
|
out_indices=(0, 1, 2, 3, 4, 5, 6, 7),
|
||||||
frozen_stages=-1,
|
frozen_stages=-1,
|
||||||
bn_eval=True,
|
bn_eval=True,
|
||||||
bn_frozen=False,
|
bn_frozen=False,
|
||||||
@ -177,6 +177,7 @@ class MobileNetv2(BaseBackbone):
|
|||||||
self.activation = activation(inplace=True)
|
self.activation = activation(inplace=True)
|
||||||
|
|
||||||
self.out_indices = out_indices
|
self.out_indices = out_indices
|
||||||
|
assert frozen_stages <= 7
|
||||||
self.frozen_stages = frozen_stages
|
self.frozen_stages = frozen_stages
|
||||||
self.bn_eval = bn_eval
|
self.bn_eval = bn_eval
|
||||||
self.bn_frozen = bn_frozen
|
self.bn_frozen = bn_frozen
|
||||||
|
@ -1,11 +1,128 @@
|
|||||||
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
from torch.nn.modules import GroupNorm
|
||||||
|
from torch.nn.modules.batchnorm import _BatchNorm
|
||||||
|
|
||||||
from mmcls.models.backbones import MobileNetv2
|
from mmcls.models.backbones import MobileNetv2
|
||||||
|
from mmcls.models.backbones.mobilenet_v2 import InvertedResidual
|
||||||
|
|
||||||
|
|
||||||
|
def is_block(modules):
|
||||||
|
"""Check if is ResNet building block."""
|
||||||
|
if isinstance(modules, (InvertedResidual,)):
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def is_norm(modules):
|
||||||
|
"""Check if is one of the norms."""
|
||||||
|
if isinstance(modules, (GroupNorm, _BatchNorm)):
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def check_norm_state(modules, train_state):
|
||||||
|
"""Check if norm layer is in correct train state."""
|
||||||
|
for mod in modules:
|
||||||
|
if isinstance(mod, _BatchNorm):
|
||||||
|
if mod.training != train_state:
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def test_mobilenetv2_invertedresidual():
|
||||||
|
|
||||||
|
with pytest.raises(AssertionError):
|
||||||
|
# stride must be in [1, 2]
|
||||||
|
InvertedResidual(64, 16,
|
||||||
|
stride=3, expand_ratio=6)
|
||||||
|
|
||||||
|
# Test InvertedResidual with checkpoint forward, stride=1
|
||||||
|
block = InvertedResidual(64, 16,
|
||||||
|
stride=1,
|
||||||
|
expand_ratio=6)
|
||||||
|
x = torch.randn(1, 64, 56, 56)
|
||||||
|
x_out = block(x)
|
||||||
|
assert x_out.shape == torch.Size([1, 16, 56, 56])
|
||||||
|
|
||||||
|
# Test InvertedResidual with checkpoint forward, stride=2
|
||||||
|
block = InvertedResidual(64, 16,
|
||||||
|
stride=2,
|
||||||
|
expand_ratio=6)
|
||||||
|
x = torch.randn(1, 64, 56, 56)
|
||||||
|
x_out = block(x)
|
||||||
|
assert x_out.shape == torch.Size([1, 16, 28, 28])
|
||||||
|
|
||||||
|
# Test InvertedResidual with checkpoint forward
|
||||||
|
block = InvertedResidual(64, 16,
|
||||||
|
stride=1,
|
||||||
|
expand_ratio=6,
|
||||||
|
with_cp=True)
|
||||||
|
assert block.with_cp
|
||||||
|
x = torch.randn(1, 64, 56, 56)
|
||||||
|
x_out = block(x)
|
||||||
|
assert x_out.shape == torch.Size([1, 16, 56, 56])
|
||||||
|
|
||||||
|
# Test InvertedResidual with activation=nn.ReLU
|
||||||
|
block = InvertedResidual(64, 16,
|
||||||
|
stride=1,
|
||||||
|
expand_ratio=6,
|
||||||
|
activation=nn.ReLU)
|
||||||
|
x = torch.randn(1, 64, 56, 56)
|
||||||
|
x_out = block(x)
|
||||||
|
assert x_out.shape == torch.Size([1, 16, 56, 56])
|
||||||
|
|
||||||
|
|
||||||
def test_mobilenetv2_backbone():
|
def test_mobilenetv2_backbone():
|
||||||
# Test MobileNetv2 with widen_factor 1.0, activation nn.ReLU6
|
with pytest.raises(TypeError):
|
||||||
|
# pretrained must be a string path
|
||||||
|
model = MobileNetv2()
|
||||||
|
model.init_weights(pretrained=0)
|
||||||
|
|
||||||
|
with pytest.raises(AssertionError):
|
||||||
|
# frozen_stages must less than 7
|
||||||
|
MobileNetv2(frozen_stages=8)
|
||||||
|
|
||||||
|
# Test MobileNetv2
|
||||||
|
model = MobileNetv2()
|
||||||
|
model.init_weights()
|
||||||
|
model.train()
|
||||||
|
assert check_norm_state(model.modules(), False)
|
||||||
|
|
||||||
|
# Test MobileNetv2 with first stage frozen
|
||||||
|
frozen_stages = 1
|
||||||
|
model = MobileNetv2(frozen_stages=frozen_stages)
|
||||||
|
model.init_weights()
|
||||||
|
model.train()
|
||||||
|
assert model.bn1.training is False
|
||||||
|
for layer in [model.conv1, model.bn1]:
|
||||||
|
for param in layer.parameters():
|
||||||
|
assert param.requires_grad is False
|
||||||
|
for i in range(1, frozen_stages + 1):
|
||||||
|
layer = getattr(model, f'layer{i}')
|
||||||
|
for mod in layer.modules():
|
||||||
|
if isinstance(mod, _BatchNorm):
|
||||||
|
assert mod.training is False
|
||||||
|
for param in layer.parameters():
|
||||||
|
assert param.requires_grad is False
|
||||||
|
|
||||||
|
# Test MobileNetv2 with first stage frozen
|
||||||
|
model = MobileNetv2(bn_frozen=True)
|
||||||
|
model.init_weights()
|
||||||
|
model.train()
|
||||||
|
assert model.bn1.training is False
|
||||||
|
|
||||||
|
for i in range(1, 8):
|
||||||
|
layer = getattr(model, f'layer{i}')
|
||||||
|
|
||||||
|
for mod in layer.modules():
|
||||||
|
if isinstance(mod, _BatchNorm):
|
||||||
|
assert mod.training is False
|
||||||
|
for params in mod.parameters():
|
||||||
|
params.requires_grad = False
|
||||||
|
|
||||||
|
# Test MobileNetv2 forward with widen_factor=1.0
|
||||||
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6)
|
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6)
|
||||||
model.init_weights()
|
model.init_weights()
|
||||||
model.train()
|
model.train()
|
||||||
@ -20,3 +137,90 @@ def test_mobilenetv2_backbone():
|
|||||||
assert feat[4].shape == torch.Size([1, 96, 14, 14])
|
assert feat[4].shape == torch.Size([1, 96, 14, 14])
|
||||||
assert feat[5].shape == torch.Size([1, 160, 7, 7])
|
assert feat[5].shape == torch.Size([1, 160, 7, 7])
|
||||||
assert feat[6].shape == torch.Size([1, 320, 7, 7])
|
assert feat[6].shape == torch.Size([1, 320, 7, 7])
|
||||||
|
|
||||||
|
# Test MobileNetv2 forward with activation=nn.ReLU
|
||||||
|
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU)
|
||||||
|
model.init_weights()
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
imgs = torch.randn(1, 3, 224, 224)
|
||||||
|
feat = model(imgs)
|
||||||
|
assert len(feat) == 8
|
||||||
|
assert feat[0].shape == torch.Size([1, 16, 112, 112])
|
||||||
|
assert feat[1].shape == torch.Size([1, 24, 56, 56])
|
||||||
|
assert feat[2].shape == torch.Size([1, 32, 28, 28])
|
||||||
|
assert feat[3].shape == torch.Size([1, 64, 14, 14])
|
||||||
|
assert feat[4].shape == torch.Size([1, 96, 14, 14])
|
||||||
|
assert feat[5].shape == torch.Size([1, 160, 7, 7])
|
||||||
|
assert feat[6].shape == torch.Size([1, 320, 7, 7])
|
||||||
|
|
||||||
|
# Test MobileNetv2 with BatchNorm forward
|
||||||
|
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6)
|
||||||
|
for m in model.modules():
|
||||||
|
if is_norm(m):
|
||||||
|
assert isinstance(m, _BatchNorm)
|
||||||
|
model.init_weights()
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
imgs = torch.randn(1, 3, 224, 224)
|
||||||
|
feat = model(imgs)
|
||||||
|
assert len(feat) == 8
|
||||||
|
assert feat[0].shape == torch.Size([1, 16, 112, 112])
|
||||||
|
assert feat[1].shape == torch.Size([1, 24, 56, 56])
|
||||||
|
assert feat[2].shape == torch.Size([1, 32, 28, 28])
|
||||||
|
assert feat[3].shape == torch.Size([1, 64, 14, 14])
|
||||||
|
assert feat[4].shape == torch.Size([1, 96, 14, 14])
|
||||||
|
assert feat[5].shape == torch.Size([1, 160, 7, 7])
|
||||||
|
assert feat[6].shape == torch.Size([1, 320, 7, 7])
|
||||||
|
|
||||||
|
# Test MobileNetv2 with BatchNorm forward
|
||||||
|
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6)
|
||||||
|
for m in model.modules():
|
||||||
|
if is_norm(m):
|
||||||
|
assert isinstance(m, _BatchNorm)
|
||||||
|
model.init_weights()
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
imgs = torch.randn(1, 3, 224, 224)
|
||||||
|
feat = model(imgs)
|
||||||
|
assert len(feat) == 8
|
||||||
|
assert feat[0].shape == torch.Size([1, 16, 112, 112])
|
||||||
|
assert feat[1].shape == torch.Size([1, 24, 56, 56])
|
||||||
|
assert feat[2].shape == torch.Size([1, 32, 28, 28])
|
||||||
|
assert feat[3].shape == torch.Size([1, 64, 14, 14])
|
||||||
|
assert feat[4].shape == torch.Size([1, 96, 14, 14])
|
||||||
|
assert feat[5].shape == torch.Size([1, 160, 7, 7])
|
||||||
|
assert feat[6].shape == torch.Size([1, 320, 7, 7])
|
||||||
|
|
||||||
|
# Test MobileNetv2 with layers 1, 3, 5 out forward
|
||||||
|
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6,
|
||||||
|
out_indices=(0, 2, 4))
|
||||||
|
model.init_weights()
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
imgs = torch.randn(1, 3, 224, 224)
|
||||||
|
feat = model(imgs)
|
||||||
|
assert len(feat) == 4
|
||||||
|
assert feat[0].shape == torch.Size([1, 16, 112, 112])
|
||||||
|
assert feat[1].shape == torch.Size([1, 32, 28, 28])
|
||||||
|
assert feat[2].shape == torch.Size([1, 96, 14, 14])
|
||||||
|
|
||||||
|
# Test MobileNetv2 with checkpoint forward
|
||||||
|
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6,
|
||||||
|
with_cp=True)
|
||||||
|
for m in model.modules():
|
||||||
|
if is_block(m):
|
||||||
|
assert m.with_cp
|
||||||
|
model.init_weights()
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
imgs = torch.randn(1, 3, 224, 224)
|
||||||
|
feat = model(imgs)
|
||||||
|
assert len(feat) == 8
|
||||||
|
assert feat[0].shape == torch.Size([1, 16, 112, 112])
|
||||||
|
assert feat[1].shape == torch.Size([1, 24, 56, 56])
|
||||||
|
assert feat[2].shape == torch.Size([1, 32, 28, 28])
|
||||||
|
assert feat[3].shape == torch.Size([1, 64, 14, 14])
|
||||||
|
assert feat[4].shape == torch.Size([1, 96, 14, 14])
|
||||||
|
assert feat[5].shape == torch.Size([1, 160, 7, 7])
|
||||||
|
assert feat[6].shape == torch.Size([1, 320, 7, 7])
|
||||||
|
Loading…
x
Reference in New Issue
Block a user