From 12eca5b94a7627a04dfb726221674b6419fd8b11 Mon Sep 17 00:00:00 2001 From: Ma Zerun <mzr1996@163.com> Date: Tue, 6 Dec 2022 18:00:01 +0800 Subject: [PATCH] Bump version to v1.0.0rc4. (#1243) * Bump version to v1.0.0rc4 * Update according to comments --- README.md | 10 +++++----- README_zh-CN.md | 15 +++++---------- docker/serve/Dockerfile | 4 ++-- docs/en/notes/changelog.md | 27 +++++++++++++++++++++++++++ docs/en/notes/faq.md | 2 +- docs/zh_CN/notes/faq.md | 2 +- mmcls/version.py | 2 +- 7 files changed, 42 insertions(+), 20 deletions(-) diff --git a/README.md b/README.md index a8bf52d1..e75daf82 100644 --- a/README.md +++ b/README.md @@ -58,6 +58,11 @@ The `1.x` branch works with **PyTorch 1.6+**. ## What's new +v1.0.0rc4 was released in 06/12/2022. + +- Upgrade API to get pre-defined models of MMClassification. See [#1236](https://github.com/open-mmlab/mmclassification/pull/1236) for more details. +- Refactor BEiT backbone and support v1/v2 inference. See [#1144](https://github.com/open-mmlab/mmclassification/pull/1144). + v1.0.0rc3 was released in 21/11/2022. - Add **Switch Recipe** Hook, Now we can modify training pipeline, mixup and loss settings during training, see [#1101](https://github.com/open-mmlab/mmclassification/pull/1101). @@ -65,11 +70,6 @@ v1.0.0rc3 was released in 21/11/2022. - Support **retrieval tasks**, see [#1055](https://github.com/open-mmlab/mmclassification/pull/1055). - Reproduce **mobileone** training accuracy. See [#1191](https://github.com/open-mmlab/mmclassification/pull/1191) -v1.0.0rc2 was released in 12/10/2022. - -- Support Deit-3 backbone. -- Fix MMEngine version requirements. - This release introduced a brand new and flexible training & test engine, but it's still in progress. Welcome to try according to [the documentation](https://mmclassification.readthedocs.io/en/1.x/). diff --git a/README_zh-CN.md b/README_zh-CN.md index 3f7234f3..01c728c7 100644 --- a/README_zh-CN.md +++ b/README_zh-CN.md @@ -57,6 +57,11 @@ MMClassification 是一款基于 PyTorch 的开源图像分类工具箱,是 [O ## 更新日志 +2022/12/06 发布了 v1.0.0rc4 版本 + +- 更新了主要 API 接口,用以方便地获取 MMClassification 中预定义的模型。详见 [#1236](https://github.com/open-mmlab/mmclassification/pull/1236)。 +- 重构 BEiT 主干网络结构,并支持 v1 和 v2 模型的推理。 + 2022/11/21 发布了 v1.0.0rc3 版本 - 添加了 **Switch Recipe Hook**,现在我们可以在训练过程中修改数据增强、Mixup设置、loss设置等 @@ -64,16 +69,6 @@ MMClassification 是一款基于 PyTorch 的开源图像分类工具箱,是 [O - 支持了检索任务 - 复现了 **MobileOne** 训练精度 -2022/10/12 发布了 v1.0.0rc2 版本 - -- 支持了 Deit-3 主干网络 -- 修复了 MMEngine 版本依赖问题 - -2022/9/30 发布了 v1.0.0rc1 版本 - -- 支持了 MViT,EdgeNeXt,Swin-Transformer V2,EfficientFormer,MobileOne 等主干网络。 -- 支持了 BEiT 风格的 transformer 层。 - 2022/8/31 发布了 v1.0.0rc0 版本 这个版本引入一个全新的,可扩展性强的训练和测试引擎,但目前仍在开发中。欢迎根据[文档](https://mmclassification.readthedocs.io/zh_CN/1.x/)进行试用。 diff --git a/docker/serve/Dockerfile b/docker/serve/Dockerfile index fa0766e6..7c254f20 100644 --- a/docker/serve/Dockerfile +++ b/docker/serve/Dockerfile @@ -7,9 +7,9 @@ FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub 32 RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub -ARG MMENGINE="0.3.1" +ARG MMENGINE="0.3.2" ARG MMCV="2.0.0rc1" -ARG MMCLS="1.0.0rc3" +ARG MMCLS="1.0.0rc4" ENV PYTHONUNBUFFERED TRUE diff --git a/docs/en/notes/changelog.md b/docs/en/notes/changelog.md index 3b07c892..1baaf185 100644 --- a/docs/en/notes/changelog.md +++ b/docs/en/notes/changelog.md @@ -1,5 +1,32 @@ # Changelog +## v1.0.0rc4(06/12/2022) + +### Highlights + +- Upgrade API to get pre-defined models of MMClassification. See [#1236](https://github.com/open-mmlab/mmclassification/pull/1236) for more details. +- Refactor BEiT backbone and support v1/v2 inference. See [#1144](https://github.com/open-mmlab/mmclassification/pull/1144). + +### New Features + +- Support getting model from the name defined in the model-index file. ([#1236](https://github.com/open-mmlab/mmclassification/pull/1236)) + +### Improvements + +- Support evaluate on both EMA and non-EMA models. ([#1204](https://github.com/open-mmlab/mmclassification/pull/1204)) +- Refactor BEiT backbone and support v1/v2 inference. ([#1144](https://github.com/open-mmlab/mmclassification/pull/1144)) + +### Bug Fixes + +- Fix `reparameterize_model.py` doesn't save meta info. ([#1221](https://github.com/open-mmlab/mmclassification/pull/1221)) +- Fix dict update in BEiT. ([#1234](https://github.com/open-mmlab/mmclassification/pull/1234)) + +### Docs Update + +- Update install tutorial. ([#1223](https://github.com/open-mmlab/mmclassification/pull/1223)) +- Update MobileNetv2 & MobileNetv3 readme. ([#1222](https://github.com/open-mmlab/mmclassification/pull/1222)) +- Add version selection in the banner. ([#1217](https://github.com/open-mmlab/mmclassification/pull/1217)) + ## v1.0.0rc3(21/11/2022) ### Highlights diff --git a/docs/en/notes/faq.md b/docs/en/notes/faq.md index b390b10e..9d2c7643 100644 --- a/docs/en/notes/faq.md +++ b/docs/en/notes/faq.md @@ -17,7 +17,7 @@ and make sure you fill in all required information in the template. | MMClassification version | MMCV version | | :----------------------: | :--------------------: | - | 1.0.0rc3 (1.x) | mmcv>=2.0.0rc1 | + | 1.0.0rc4 (1.x) | mmcv>=2.0.0rc1 | | 0.24.0 (master) | mmcv>=1.4.2, \<1.7.0 | | 0.23.1 | mmcv>=1.4.2, \<1.6.0 | | 0.22.1 | mmcv>=1.4.2, \<1.6.0 | diff --git a/docs/zh_CN/notes/faq.md b/docs/zh_CN/notes/faq.md index 450214ae..d528b048 100644 --- a/docs/zh_CN/notes/faq.md +++ b/docs/zh_CN/notes/faq.md @@ -15,7 +15,7 @@ | MMClassification version | MMCV version | | :----------------------: | :--------------------: | - | 1.0.0rc3 (1.x) | mmcv>=2.0.0rc1 | + | 1.0.0rc4 (1.x) | mmcv>=2.0.0rc1 | | 0.24.0 (master) | mmcv>=1.4.2, \<1.7.0 | | 0.23.1 | mmcv>=1.4.2, \<1.6.0 | | 0.22.1 | mmcv>=1.4.2, \<1.6.0 | diff --git a/mmcls/version.py b/mmcls/version.py index 5e6347a5..6a6b4cae 100644 --- a/mmcls/version.py +++ b/mmcls/version.py @@ -1,6 +1,6 @@ # Copyright (c) OpenMMLab. All rights reserved -__version__ = '1.0.0rc3' +__version__ = '1.0.0rc4' def parse_version_info(version_str):