[DOC] Fix typo in docs/*/migration.md (#1671)

* Update migration.md

* Update migration.md
pull/1689/head
Lamply 2023-07-05 11:12:25 +08:00 committed by GitHub
parent 7cbfb36c14
commit 130751185c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 2 additions and 2 deletions

View File

@ -410,7 +410,7 @@ Changes in **`pipeline`**:
- The original formatting transforms **`ToTensor`**, **`ImageToTensor`** and **`Collect`** are combined as [`PackInputs`](mmpretrain.datasets.transforms.PackInputs).
- We don't recommend to do **`Normalize`** in the dataset pipeline. Please remove it from pipelines and set it in the `data_preprocessor` field.
- The argument `flip_prob` in [**`RandomFlip`**](mmcv.transforms.RandomFlip) is renamed to `flip`.
- The argument `flip_prob` in [**`RandomFlip`**](mmcv.transforms.RandomFlip) is renamed to `prob`.
- The argument `size` in [**`RandomCrop`**](mmpretrain.datasets.transforms.RandomCrop) is renamed to `crop_size`.
- The argument `size` in [**`RandomResizedCrop`**](mmpretrain.datasets.transforms.RandomResizedCrop) is renamed to `scale`.
- The argument `size` in [**`Resize`**](mmcv.transforms.Resize) is renamed to `scale`. And `Resize` won't support size like `(256, -1)`, please use [`ResizeEdge`](mmpretrain.datasets.transforms.ResizeEdge) to replace it.

View File

@ -369,7 +369,7 @@ test_dataloader = val_dataloader
- 原先的 **`ToTensor`**、**`ImageToTensor`** 和 **`Collect`** 被合并为 [`PackInputs`](mmpretrain.datasets.transforms.PackInputs)
- 我们建议去除数据集流水线中的 **`Normalize`** 变换,转而使用 `data_preprocessor` 字段进行归一化预处理。
- [**`RandomFlip`**](mmcv.transforms.RandomFlip) 中的 `flip_prob` 参数被重命名为 `flip`
- [**`RandomFlip`**](mmcv.transforms.RandomFlip) 中的 `flip_prob` 参数被重命名为 `prob`
- [**`RandomCrop`**](mmpretrain.datasets.transforms.RandomCrop) 中的 `size` 参数被重命名为 `crop_size`
- [**`RandomResizedCrop`**](mmpretrain.datasets.transforms.RandomResizedCrop) 中的 `size` 参数被重命名为 `scale`
- [**`Resize`**](mmcv.transforms.Resize) 中的 `size` 参数被重命名为 `scale`。并且不再支持形如 `(256, -1)` 的尺寸,请使用 [`ResizeEdge`](mmpretrain.datasets.transforms.ResizeEdge)