Bump version to v1.2.0 (#1860)
* [Fix] Fix resize mix argument bug. * Bump version to v1.2.0 * Fix UTdev v1.2.0
parent
9ac4b316f0
commit
17a886cb58
|
@ -86,6 +86,11 @@ https://github.com/open-mmlab/mmpretrain/assets/26739999/e4dcd3a2-f895-4d1b-a351
|
|||
|
||||
## What's new
|
||||
|
||||
🌟 v1.2.0 was released in 04/01/2023
|
||||
|
||||
- Support LLaVA 1.5.
|
||||
- Implement of RAM with a gradio interface.
|
||||
|
||||
🌟 v1.1.0 was released in 12/10/2023
|
||||
|
||||
- Support Mini-GPT4 training and provide a Chinese model (based on Baichuan-7B)
|
||||
|
|
|
@ -84,6 +84,11 @@ https://github.com/open-mmlab/mmpretrain/assets/26739999/e4dcd3a2-f895-4d1b-a351
|
|||
|
||||
## 更新日志
|
||||
|
||||
🌟 2024/01/04 发布了 v1.2.0 版本
|
||||
|
||||
- 支持了 LLaVA 1.5
|
||||
- 实现了一个 RAM 模型的 gradio 推理例程
|
||||
|
||||
🌟 2023/10/12 发布了 v1.1.0 版本
|
||||
|
||||
- 支持 Mini-GPT4 训练并提供一个基于 Baichuan-7B 的中文模型
|
||||
|
|
|
@ -3,7 +3,7 @@ ARG CUDA="11.7"
|
|||
ARG CUDNN="8"
|
||||
FROM pytorch/torchserve:latest-gpu
|
||||
|
||||
ARG MMPRE="1.1.1"
|
||||
ARG MMPRE="1.2.0"
|
||||
|
||||
ENV PYTHONUNBUFFERED TRUE
|
||||
|
||||
|
|
|
@ -1,5 +1,16 @@
|
|||
# Changelog (MMPreTrain)
|
||||
|
||||
## v1.2.0(04/01/2024)
|
||||
|
||||
### New Features
|
||||
|
||||
- [Feature] Support LLaVA 1.5 ([#1853](https://github.com/open-mmlab/mmpretrain/pull/1853))
|
||||
- [Feature] Implement of RAM with a gradio interface. ([#1802](https://github.com/open-mmlab/mmpretrain/pull/1802))
|
||||
|
||||
### Bug Fix
|
||||
|
||||
- [Fix] Fix resize mix argument bug.
|
||||
|
||||
## v1.1.0(12/10/2023)
|
||||
|
||||
### New Features
|
||||
|
|
|
@ -16,7 +16,8 @@ and make sure you fill in all required information in the template.
|
|||
|
||||
| MMPretrain version | MMEngine version | MMCV version |
|
||||
| :----------------: | :---------------: | :--------------: |
|
||||
| 1.1.1 (main) | mmengine >= 0.8.3 | mmcv >= 2.0.0 |
|
||||
| 1.2.0 (main) | mmengine >= 0.8.3 | mmcv >= 2.0.0 |
|
||||
| 1.1.1 | mmengine >= 0.8.3 | mmcv >= 2.0.0 |
|
||||
| 1.0.0 | mmengine >= 0.8.0 | mmcv >= 2.0.0 |
|
||||
| 1.0.0rc8 | mmengine >= 0.7.1 | mmcv >= 2.0.0rc4 |
|
||||
| 1.0.0rc7 | mmengine >= 0.5.0 | mmcv >= 2.0.0rc4 |
|
||||
|
|
|
@ -13,7 +13,8 @@
|
|||
|
||||
| MMPretrain 版本 | MMEngine 版本 | MMCV 版本 |
|
||||
| :-------------: | :---------------: | :--------------: |
|
||||
| 1.1.1 (main) | mmengine >= 0.8.3 | mmcv >= 2.0.0 |
|
||||
| 1.2.0 (main) | mmengine >= 0.8.3 | mmcv >= 2.0.0 |
|
||||
| 1.1.1 | mmengine >= 0.8.3 | mmcv >= 2.0.0 |
|
||||
| 1.0.0 | mmengine >= 0.8.0 | mmcv >= 2.0.0 |
|
||||
| 1.0.0rc8 | mmengine >= 0.7.1 | mmcv >= 2.0.0rc4 |
|
||||
| 1.0.0rc7 | mmengine >= 0.5.0 | mmcv >= 2.0.0rc4 |
|
||||
|
|
|
@ -7,7 +7,7 @@ from .apis import * # noqa: F401, F403
|
|||
from .version import __version__
|
||||
|
||||
mmcv_minimum_version = '2.0.0'
|
||||
mmcv_maximum_version = '2.2.0'
|
||||
mmcv_maximum_version = '2.4.0'
|
||||
mmcv_version = digit_version(mmcv.__version__)
|
||||
|
||||
mmengine_minimum_version = '0.8.3'
|
||||
|
|
|
@ -87,7 +87,7 @@ class ResizeMix(CutMix):
|
|||
(y1, y2, x1, x2), lam = self.cutmix_bbox_and_lam(img_shape, lam)
|
||||
batch_inputs[:, :, y1:y2, x1:x2] = F.interpolate(
|
||||
batch_inputs[index],
|
||||
size=(y2 - y1, x2 - x1),
|
||||
size=(int(y2 - y1), int(x2 - x1)),
|
||||
mode=self.interpolation,
|
||||
align_corners=False)
|
||||
mixed_scores = lam * batch_scores + (1 - lam) * batch_scores[index, :]
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved
|
||||
|
||||
__version__ = '1.1.1'
|
||||
__version__ = '1.2.0'
|
||||
|
||||
|
||||
def parse_version_info(version_str):
|
||||
|
|
|
@ -1,2 +1,2 @@
|
|||
mmcv>=2.0.0,<2.3.0
|
||||
mmcv>=2.0.0,<2.4.0
|
||||
mmengine>=0.8.3,<1.0.0
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
albumentations>=0.3.2 --no-binary qudida,albumentations # For Albumentations data transform
|
||||
grad-cam >= 1.3.7 # For CAM visualization
|
||||
grad-cam >= 1.3.7,<1.5.0 # For CAM visualization
|
||||
requests # For torchserve
|
||||
scikit-learn # For t-SNE visualization and unit tests.
|
||||
|
|
|
@ -169,4 +169,5 @@ class TestRepMLP(TestCase):
|
|||
|
||||
assert len(feats_) == len(feats__)
|
||||
for i in range(len(feats)):
|
||||
self.assertTrue(torch.allclose(feats__[i], feats_[i]))
|
||||
self.assertTrue(
|
||||
torch.allclose(feats__[i], feats_[i], rtol=0.01, atol=0.01))
|
||||
|
|
Loading…
Reference in New Issue