[CodeCamp2023-337] New Version of config Adapting ConvNeXt Algorithm (#1760)
* add configs\_base_\datasets\imagenet21k_bs128.py * update convnext_base_32xb128_in1k_384px.py * add convnext-base_32xb128_in1k.py * add convnext-base_32xb128_in21k.py * add convnext-large_64xb64_in1k-384px.py * add convnext-large_64xb64_in1k.py * add convnext-large_64xb64_in21k.py * add convnext-small_32xb128_in1k-384px.py * add convnext-small_32xb128_in1k.py * add convnext-tiny_32xb128_in1k-384px.py * add convnext-tiny_32xb128_in1k.py * add convnext-xlarge_64xb64_in1k-384px.py * add convnext-xlarge_64xb64_in1k.py * add convnext-xlarge_64xb64_in21k.py * pre-commit checkpull/1765/head
parent
29d706248c
commit
1be28ea7c4
|
@ -0,0 +1,35 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmengine.dataset import DefaultSampler
|
||||
|
||||
from mmpretrain.datasets import (ImageNet21k, LoadImageFromFile, PackInputs,
|
||||
RandomFlip, RandomResizedCrop)
|
||||
|
||||
# dataset settings
|
||||
dataset_type = ImageNet21k
|
||||
data_preprocessor = dict(
|
||||
num_classes=21842,
|
||||
# RGB format normalization parameters
|
||||
mean=[123.675, 116.28, 103.53],
|
||||
std=[58.395, 57.12, 57.375],
|
||||
# convert image from BGR to RGB
|
||||
to_rgb=True,
|
||||
)
|
||||
|
||||
train_pipeline = [
|
||||
dict(type=LoadImageFromFile),
|
||||
dict(type=RandomResizedCrop, scale=224),
|
||||
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
|
||||
dict(type=PackInputs),
|
||||
]
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=128,
|
||||
num_workers=5,
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root='data/imagenet21k',
|
||||
split='train',
|
||||
pipeline=train_pipeline),
|
||||
sampler=dict(type=DefaultSampler, shuffle=True),
|
||||
)
|
|
@ -0,0 +1,28 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmengine.config import read_base
|
||||
|
||||
with read_base():
|
||||
from .._base_.datasets.imagenet_bs64_swin_224 import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.convnext_base import *
|
||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||
|
||||
from mmpretrain.engine import EMAHook
|
||||
|
||||
# dataset setting
|
||||
train_dataloader.update(batch_size=128)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(
|
||||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=None,
|
||||
)
|
||||
|
||||
# runtime setting
|
||||
custom_hooks = [dict(type=EMAHook, momentum=4e-5, priority='ABOVE_NORMAL')]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||||
# based on the actual training batch size.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmengine.config import read_base
|
||||
|
||||
with read_base():
|
||||
from .._base_.datasets.imagenet21k_bs128 import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.convnext_base import *
|
||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||
|
||||
# model setting
|
||||
model.update(head=dict(num_classes=21841))
|
||||
|
||||
# dataset setting
|
||||
data_preprocessor.update(num_classes=21841)
|
||||
train_dataloader.update(batch_size=128)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(
|
||||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=dict(max_norm=5.0),
|
||||
)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||||
# based on the actual training batch size.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmengine.config import read_base
|
||||
|
||||
from mmpretrain.engine import EMAHook
|
||||
|
||||
with read_base():
|
||||
from .._base_.datasets.imagenet_bs64_swin_384 import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.convnext_base import *
|
||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||
|
||||
# dataset setting
|
||||
train_dataloader.update(batch_size=64)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(
|
||||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=dict(max_norm=5.0),
|
||||
)
|
||||
|
||||
# runtime setting
|
||||
custom_hooks = [dict(type=EMAHook, momentum=4e-5, priority='ABOVE_NORMAL')]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||||
# based on the actual training batch size.
|
||||
# base_batch_size = (64 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmengine.config import read_base
|
||||
|
||||
from mmpretrain.engine import EMAHook
|
||||
|
||||
with read_base():
|
||||
from .._base_.datasets.imagenet_bs64_swin_384 import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.convnext_base import *
|
||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||
|
||||
# dataset setting
|
||||
train_dataloader.update(batch_size=64)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(
|
||||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=None,
|
||||
)
|
||||
|
||||
# runtime setting
|
||||
custom_hooks = [dict(type=EMAHook, momentum=1e-4, priority='ABOVE_NORMAL')]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||||
# based on the actual training batch size.
|
||||
# base_batch_size = (64 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
|
@ -0,0 +1,26 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmengine.config import read_base
|
||||
|
||||
with read_base():
|
||||
from .._base_.datasets.imagenet21k_bs128 import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.convnext_base import *
|
||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||
|
||||
# model setting
|
||||
model.update(head=dict(num_classes=21841))
|
||||
|
||||
# dataset setting
|
||||
data_preprocessor.update(num_classes=21841)
|
||||
train_dataloader.update(batch_size=64)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(
|
||||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=dict(max_norm=5.0),
|
||||
)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||||
# based on the actual training batch size.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmengine.config import read_base
|
||||
|
||||
from mmpretrain.engine import EMAHook
|
||||
|
||||
with read_base():
|
||||
from .._base_.datasets.imagenet_bs64_swin_384 import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.convnext_base import *
|
||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||
|
||||
# dataset setting
|
||||
train_dataloader.update(batch_size=128)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(
|
||||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=dict(max_norm=5.0),
|
||||
)
|
||||
|
||||
# runtime setting
|
||||
custom_hooks = [dict(type=EMAHook, momentum=4e-5, priority='ABOVE_NORMAL')]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||||
# based on the actual training batch size.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmengine.config import read_base
|
||||
|
||||
from mmpretrain.engine import EMAHook
|
||||
|
||||
with read_base():
|
||||
from .._base_.datasets.imagenet_bs64_swin_224 import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.convnext_base import *
|
||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||
|
||||
# dataset setting
|
||||
train_dataloader.update(batch_size=128)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(
|
||||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=None,
|
||||
)
|
||||
|
||||
# runtime setting
|
||||
custom_hooks = [dict(type=EMAHook, momentum=1e-4, priority='ABOVE_NORMAL')]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||||
# based on the actual training batch size.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmengine.config import read_base
|
||||
|
||||
from mmpretrain.engine import EMAHook
|
||||
|
||||
with read_base():
|
||||
from .._base_.datasets.imagenet_bs64_swin_384 import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.convnext_base import *
|
||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||
|
||||
# dataset setting
|
||||
train_dataloader.update(batch_size=128)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(
|
||||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=dict(max_norm=5.0),
|
||||
)
|
||||
|
||||
# runtime setting
|
||||
custom_hooks = [dict(type=EMAHook, momentum=4e-5, priority='ABOVE_NORMAL')]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||||
# based on the actual training batch size.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmengine.config import read_base
|
||||
|
||||
from mmpretrain.engine import EMAHook
|
||||
|
||||
with read_base():
|
||||
from .._base_.datasets.imagenet_bs64_swin_224 import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.convnext_base import *
|
||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||
|
||||
# dataset setting
|
||||
train_dataloader.update(batch_size=128)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(
|
||||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=None,
|
||||
)
|
||||
|
||||
# runtime setting
|
||||
custom_hooks = [dict(type=EMAHook, momentum=1e-4, priority='ABOVE_NORMAL')]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||||
# based on the actual training batch size.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmengine.config import read_base
|
||||
|
||||
from mmpretrain.engine import EMAHook
|
||||
|
||||
with read_base():
|
||||
from .._base_.datasets.imagenet_bs64_swin_384 import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.convnext_base import *
|
||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||
|
||||
# dataset setting
|
||||
train_dataloader.update(batch_size=64)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(
|
||||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=dict(max_norm=5.0),
|
||||
)
|
||||
|
||||
# runtime setting
|
||||
custom_hooks = [dict(type=EMAHook, momentum=4e-5, priority='ABOVE_NORMAL')]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||||
# based on the actual training batch size.
|
||||
# base_batch_size = (64 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmengine.config import read_base
|
||||
|
||||
from mmpretrain.engine import EMAHook
|
||||
|
||||
with read_base():
|
||||
from .._base_.datasets.imagenet_bs64_swin_224 import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.convnext_base import *
|
||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||
|
||||
# dataset setting
|
||||
train_dataloader.update(batch_size=64)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(
|
||||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=None,
|
||||
)
|
||||
|
||||
# runtime setting
|
||||
custom_hooks = [dict(type=EMAHook, momentum=1e-4, priority='ABOVE_NORMAL')]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||||
# based on the actual training batch size.
|
||||
# base_batch_size = (64 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
|
@ -0,0 +1,28 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmengine.config import read_base
|
||||
|
||||
from mmpretrain.engine import EMAHook
|
||||
|
||||
with read_base():
|
||||
from .._base_.datasets.imagenet21k_bs128 import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.convnext_base import *
|
||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||
|
||||
# model setting
|
||||
model.update(head=dict(num_classes=21841))
|
||||
|
||||
# dataset setting
|
||||
data_preprocessor.update(num_classes=21841)
|
||||
train_dataloader.update(batch_size=64)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(
|
||||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=dict(max_norm=5.0),
|
||||
)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||||
# based on the actual training batch size.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
|
@ -25,4 +25,4 @@ custom_hooks = [dict(type=EMAHook, momentum=4e-5, priority='ABOVE_NORMAL')]
|
|||
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||||
# based on the actual training batch size.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
||||
|
|
Loading…
Reference in New Issue