[Docs] Fix TOC of `visualization.md` and add example images. (#513)
After Width: | Height: | Size: 29 KiB |
After Width: | Height: | Size: 47 KiB |
Before Width: | Height: | Size: 44 KiB After Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 9.2 KiB After Width: | Height: | Size: 9.2 KiB |
Before Width: | Height: | Size: 19 KiB After Width: | Height: | Size: 19 KiB |
|
@ -4,13 +4,11 @@
|
|||
|
||||
- [Visualization](#visualization)
|
||||
- [Pipeline Visualization](#pipeline-visualization)
|
||||
- [Usage](#usage)
|
||||
- [Learning Rate Schedule Visualization](#learning-rate-schedule-visualization)
|
||||
- [FAQs](#faqs)
|
||||
|
||||
<!-- TOC -->
|
||||
## pipeline visualization
|
||||
|
||||
### Usage
|
||||
## Pipeline Visualization
|
||||
|
||||
```bash
|
||||
python tools/visualizations/vis_pipeline.py \
|
||||
|
@ -58,7 +56,7 @@ python tools/visualizations/vis_pipeline.py \
|
|||
python ./tools/visualizations/vis_pipeline.py ./configs/resnet/resnet50_b32x8_imagenet.py --show --mode pipeline
|
||||
```
|
||||
|
||||
<div align=center><img src="../_static/image/pipeline.JPEG" style=" width: auto; height: 40%; "></div>
|
||||
<div align=center><img src="../_static/image/tools/visualization/pipeline-pipeline.jpg" style=" width: auto; height: 40%; "></div>
|
||||
|
||||
2. Visualize 10 comparison pictures in the `ImageNet` train set and save them in the `./tmp` folder:
|
||||
|
||||
|
@ -66,7 +64,7 @@ python ./tools/visualizations/vis_pipeline.py ./configs/resnet/resnet50_b32x8_im
|
|||
python ./tools/visualizations/vis_pipeline.py configs/swin_transformer/swin_base_224_b16x64_300e_imagenet.py --phase train --output-dir tmp --number 10 --adaptive
|
||||
```
|
||||
|
||||
<div align=center><img src="../_static/image/concat.JPEG" style=" width: auto; height: 40%; "></div>
|
||||
<div align=center><img src="../_static/image/tools/visualization/pipeline-concat.jpg" style=" width: auto; height: 40%; "></div>
|
||||
|
||||
3. Visualize 100 original pictures in the `CIFAR100` validation set, then display and save them in the `./tmp` folder:
|
||||
|
||||
|
@ -74,11 +72,9 @@ python ./tools/visualizations/vis_pipeline.py configs/swin_transformer/swin_base
|
|||
python ./tools/visualizations/vis_pipeline.py configs/resnet/resnet50_b16x8_cifar100.py --phase val --output-dir tmp --mode original --number 100 --show --adaptive --bgr2rgb
|
||||
```
|
||||
|
||||
<div align=center><img src="../_static/image/original.JPEG" style=" width: auto; height: 40%; "></div>
|
||||
<div align=center><img src="../_static/image/tools/visualization/pipeline-original.jpg" style=" width: auto; height: 40%; "></div>
|
||||
|
||||
## lr schedule visualization
|
||||
|
||||
### Usage
|
||||
## Learning Rate Schedule Visualization
|
||||
|
||||
```bash
|
||||
python tools/visualizations/vis_lr.py \
|
||||
|
@ -113,12 +109,16 @@ Loading annotations maybe consume much time, you can directly specify the size o
|
|||
python tools/visualizations/vis_lr.py configs/resnet/resnet50_b16x8_cifar100.py
|
||||
```
|
||||
|
||||
<div align=center><img src="../_static/image/tools/visualization/lr_schedule1.png" style=" width: auto; height: 40%; "></div>
|
||||
|
||||
When using ImageNet, directly specify the size of ImageNet, as below:
|
||||
|
||||
```bash
|
||||
python tools/visualizations/vis_lr.py configs/repvgg/repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py --dataset-size 1281167 --ngpus 4 --save-path ./repvgg-B3g4_4xb64-lr.jpg
|
||||
```
|
||||
|
||||
<div align=center><img src="../_static/image/tools/visualization/lr_schedule2.png" style=" width: auto; height: 40%; "></div>
|
||||
|
||||
## FAQs
|
||||
|
||||
- None
|
||||
|
|
After Width: | Height: | Size: 29 KiB |
After Width: | Height: | Size: 47 KiB |
Before Width: | Height: | Size: 44 KiB After Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 9.2 KiB After Width: | Height: | Size: 9.2 KiB |
Before Width: | Height: | Size: 19 KiB After Width: | Height: | Size: 19 KiB |
|
@ -4,15 +4,13 @@
|
|||
|
||||
- [可视化](#可视化)
|
||||
- [数据流水线可视化](#数据流水线可视化)
|
||||
- [使用方法](#使用方法)
|
||||
- [学习率策略可视化](#学习率策略可视化)
|
||||
- [常见问题](#常见问题)
|
||||
|
||||
<!-- TOC -->
|
||||
|
||||
## 数据流水线可视化
|
||||
|
||||
### 使用方法
|
||||
|
||||
```bash
|
||||
python tools/visualizations/vis_pipeline.py \
|
||||
${CONFIG_FILE} \
|
||||
|
@ -59,7 +57,7 @@ python tools/visualizations/vis_pipeline.py \
|
|||
python ./tools/visualizations/vis_pipeline.py ./configs/resnet/resnet50_b32x8_imagenet.py --show --mode pipeline
|
||||
```
|
||||
|
||||
<div align=center><img src="../_static/image/pipeline.JPEG" style=" width: auto; height: 40%; "></div>
|
||||
<div align=center><img src="../_static/image/tools/visualization/pipeline-pipeline.jpg" style=" width: auto; height: 40%; "></div>
|
||||
|
||||
2. 可视化 `ImageNet` 训练集的10张原始图片与预处理后图片对比图,保存在 `./tmp` 文件夹下:
|
||||
|
||||
|
@ -67,7 +65,7 @@ python ./tools/visualizations/vis_pipeline.py ./configs/resnet/resnet50_b32x8_im
|
|||
python ./tools/visualizations/vis_pipeline.py configs/swin_transformer/swin_base_224_b16x64_300e_imagenet.py --phase train --output-dir tmp --number 10 --adaptive
|
||||
```
|
||||
|
||||
<div align=center><img src="../_static/image/concat.JPEG" style=" width: auto; height: 40%; "></div>
|
||||
<div align=center><img src="../_static/image/tools/visualization/pipeline-concat.jpg" style=" width: auto; height: 40%; "></div>
|
||||
|
||||
3. 可视化 `CIFAR100` 验证集中的100张原始图片,显示并保存在 `./tmp` 文件夹下:
|
||||
|
||||
|
@ -75,12 +73,10 @@ python ./tools/visualizations/vis_pipeline.py configs/swin_transformer/swin_base
|
|||
python ./tools/visualizations/vis_pipeline.py configs/resnet/resnet50_b16x8_cifar100.py --phase val --output-dir tmp --mode original --number 100 --show --adaptive --bgr2rgb
|
||||
```
|
||||
|
||||
<div align=center><img src="../_static/image/original.JPEG" style=" width: auto; height: 40%; "></div>
|
||||
<div align=center><img src="../_static/image/tools/visualization/pipeline-original.jpg" style=" width: auto; height: 40%; "></div>
|
||||
|
||||
## 学习率策略可视化
|
||||
|
||||
### 使用方法
|
||||
|
||||
```bash
|
||||
python tools/visualizations/vis_lr.py \
|
||||
${CONFIG_FILE} \
|
||||
|
@ -102,7 +98,7 @@ python tools/visualizations/vis_lr.py \
|
|||
- `title` : 可视化图片的标题,默认为配置文件名。
|
||||
- `style` : 可视化图片的风格,默认为 `whitegrid`。
|
||||
- `window-size`: 可视化窗口大小,如果没有指定,默认为 `12*7`。如果需要指定,按照格式 `'W*H'`。
|
||||
- `cfg-options` : 对配置文件的修改,参考[教程 1:如何编写配置文件](https://mmclassification.readthedocs.io/zh_CN/latest/tutorials/config.html。
|
||||
- `cfg-options` : 对配置文件的修改,参考[教程 1:如何编写配置文件](https://mmclassification.readthedocs.io/zh_CN/latest/tutorials/config.html)。
|
||||
|
||||
```{note}
|
||||
|
||||
|
@ -116,12 +112,16 @@ python tools/visualizations/vis_lr.py \
|
|||
python tools/visualizations/vis_lr.py configs/resnet/resnet50_b16x8_cifar100.py
|
||||
```
|
||||
|
||||
<div align=center><img src="../_static/image/tools/visualization/lr_schedule1.png" style=" width: auto; height: 40%; "></div>
|
||||
|
||||
当数据集为 ImageNet 时,通过直接指定数据集大小来节约时间,并保存图片:
|
||||
|
||||
```bash
|
||||
python tools/visualizations/vis_lr.py configs/repvgg/repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py --dataset-size 1281167 --ngpus 4 --save-path ./repvgg-B3g4_4xb64-lr.jpg
|
||||
```
|
||||
|
||||
<div align=center><img src="../_static/image/tools/visualization/lr_schedule2.png" style=" width: auto; height: 40%; "></div>
|
||||
|
||||
## 常见问题
|
||||
|
||||
- 无
|
||||
|
|