Bump version to v0.22.0. (#756)

pull/759/head
Ma Zerun 2022-03-31 01:36:53 +08:00 committed by GitHub
parent 922a31a68e
commit 2e7f99946b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 60 additions and 23 deletions

View File

@ -59,6 +59,13 @@ The master branch works with **PyTorch 1.5+**.
## What's new
v0.22.0 was released in 30/3/2022.
Highlights of the new version:
- Support a series of **CSP Network**, such as CSP-ResNet, CSP-ResNeXt and CSP-DarkNet.
- A new `CustomDataset` class to help you **build dataset of yourself**!
- Support new backbones - **ConvMixer**, **RepMLP** and new dataset - **CUB dataset**.
v0.21.0 was released in 4/3/2022.
Highlights of the new version:
@ -66,13 +73,6 @@ Highlights of the new version:
- Support **dynamic input shape** for ViT-based algorithms. Now our ViT, DeiT, Swin-Transformer and T2T-ViT support forwarding with any input shape.
- Reproduce training results of DeiT. And our DeiT-T and DeiT-S have **higher accuracy** comparing with the official weights.
v0.20.0 was released in 30/1/2022.
Highlights of the new version:
- Support **K-fold cross-validation**. The tutorial will be released later.
- Support **HRNet**, **ConvNeXt**, **Twins** and **EfficientNet**.
- Support model conversion from PyTorch to **Core ML** by a tool.
Please refer to [changelog.md](docs/en/changelog.md) for more details and other release history.
## Installation

View File

@ -57,20 +57,20 @@ MMClassification 是一款基于 PyTorch 的开源图像分类工具箱,是 [O
## 更新日志
2022/3/30 发布了 v0.22.0 版本
新版本亮点:
- 支持了一系列 **CSP Net**,包括 CSP-ResNetCSP-ResNeXt 和 CSP-DarkNet。
- 我们提供了一个新的 `CustomDataset` 类,这个类将帮助你轻松使用**自己的数据集**
- 支持了新的主干网络 **ConvMixer**、**RepMLP** 和一个新的数据集 **CUB dataset**
2022/3/4 发布了 v0.21.0 版本
新版本亮点:
- 支持了 **ResNetV1c****Wide-ResNet** 两个 ResNet 变种,并提供了预训练模型
- ViT相关模型支持 **动态输入尺寸**。现在我们的 ViTDeiTSwin-Transformer 和 T2T-ViT 支持任意尺寸的输入。
- ViT 相关模型支持 **动态输入尺寸**。现在我们的 ViTDeiTSwin-Transformer 和 T2T-ViT 支持任意尺寸的输入。
- 复现了 DeiT 的训练结果,并且我们的 DeiT-T 和 DeiT-S 拥有比官方权重 **更高的精度**。
2022/1/30 发布了 v0.20.0 版本
新版本亮点:
- 支持 **K 折交叉验证** 工具。相应文档会在后续添加。
- 支持了 **HRNet****ConvNeXt****Twins** 以及 **EfficientNet** 四个主干网络,欢迎使用!
- 支持了从 PyTorch 模型到 Core-ML 模型的转换工具。
发布历史和更新细节请参考 [更新日志](docs/en/changelog.md)
## 安装
@ -91,7 +91,7 @@ pip3 install -e .
## 基础教程
请参考 [基础教程](https://mmclassification.readthedocs.io/zh_CN/latest/getting_started.html) 来了解 MMClassification 的基本使用。MMClassification 也提供了其他更详细的教程:
请参考 [基础教程](https://mmclassification.readthedocs.io/zh_CN/latest/getting_started.html) 来了解 MMClassification 的基本使用。MMClassification 也提供了其他更详细的教程
- [如何编写配置文件](https://mmclassification.readthedocs.io/zh_CN/latest/tutorials/config.html)
- [如何微调模型](https://mmclassification.readthedocs.io/zh_CN/latest/tutorials/finetune.html)

View File

@ -4,7 +4,7 @@ ARG CUDNN="7"
FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
ARG MMCV="1.4.2"
ARG MMCLS="0.21.0"
ARG MMCLS="0.22.0"
ENV PYTHONUNBUFFERED TRUE

View File

@ -1,5 +1,40 @@
# Changelog
## v0.22.0(30/3/2022)
### Highlights
- Support a series of CSP Network, such as CSP-ResNet, CSP-ResNeXt and CSP-DarkNet.
- A new `CustomDataset` class to help you build dataset of yourself!
- Support ConvMixer, RepMLP and new dataset - CUB dataset.
### New Features
- [Feature] Add CSPNet and backbone and checkpoints ([#735](https://github.com/open-mmlab/mmclassification/pull/735))
- [Feature] Add `CustomDataset`. ([#738](https://github.com/open-mmlab/mmclassification/pull/738))
- [Feature] Add diff seeds to diff ranks. ([#744](https://github.com/open-mmlab/mmclassification/pull/744))
- [Feature] Support ConvMixer. ([#716](https://github.com/open-mmlab/mmclassification/pull/716))
- [Feature] Our `dist_train` & `dist_test` tools support distributed training on multiple machines. ([#734](https://github.com/open-mmlab/mmclassification/pull/734))
- [Feature] Add RepMLP backbone and checkpoints. ([#709](https://github.com/open-mmlab/mmclassification/pull/709))
- [Feature] Support CUB dataset. ([#703](https://github.com/open-mmlab/mmclassification/pull/703))
- [Feature] Support ResizeMix. ([#676](https://github.com/open-mmlab/mmclassification/pull/676))
### Improvements
- [Enhance] Use `--a-b` instead of `--a_b` in arguments. ([#754](https://github.com/open-mmlab/mmclassification/pull/754))
- [Enhance] Add `get_cat_ids` and `get_gt_labels` to KFoldDataset. ([#721](https://github.com/open-mmlab/mmclassification/pull/721))
- [Enhance] Set torch seed in `worker_init_fn`. ([#733](https://github.com/open-mmlab/mmclassification/pull/733))
### Bug Fixes
- [Fix] Fix the discontiguous output feature map of ConvNeXt. ([#743](https://github.com/open-mmlab/mmclassification/pull/743))
### Docs Update
- [Docs] Add brief installation steps in README for copy&paste. ([#755](https://github.com/open-mmlab/mmclassification/pull/755))
- [Docs] fix logo url link from mmocr to mmcls. ([#732](https://github.com/open-mmlab/mmclassification/pull/732))
## v0.21.0(04/03/2022)
### Highlights

View File

@ -10,8 +10,9 @@ The compatible MMClassification and MMCV versions are as below. Please install t
| MMClassification version | MMCV version |
|:------------------------:|:---------------------:|
| dev | mmcv>=1.4.6, <=1.5.0 |
| 0.21.0 (master) | mmcv>=1.4.2, <=1.5.0 |
| dev | mmcv>=1.4.8, <=1.5.0 |
| 0.22.0 (master) | mmcv>=1.4.2, <=1.5.0 |
| 0.21.0 | mmcv>=1.4.2, <=1.5.0 |
| 0.20.1 | mmcv>=1.4.2, <=1.5.0 |
| 0.19.0 | mmcv>=1.3.16, <=1.5.0 |
| 0.18.0 | mmcv>=1.3.16, <=1.5.0 |

View File

@ -10,8 +10,9 @@ MMClassification 和 MMCV 的适配关系如下,请安装正确版本的 MMCV
| MMClassification 版本 | MMCV 版本 |
|:---------------------:|:---------------------:|
| dev | mmcv>=1.4.6, <=1.5.0 |
| 0.21.0 (master)| mmcv>=1.4.2, <=1.5.0 |
| dev | mmcv>=1.4.8, <=1.5.0 |
| 0.22.0 (master)| mmcv>=1.4.2, <=1.5.0 |
| 0.21.0 | mmcv>=1.4.2, <=1.5.0 |
| 0.20.1 | mmcv>=1.4.2, <=1.5.0 |
| 0.19.0 | mmcv>=1.3.16, <=1.5.0 |
| 0.18.0 | mmcv>=1.3.16, <=1.5.0 |
@ -109,7 +110,7 @@ MMClassification 和 MMCV 的适配关系如下,请安装正确版本的 MMCV
cd mmclassification
```
2. [可选] 签出到 `dev` 分支
2. 【可选】 签出到 `dev` 分支
```shell
git checkout dev

View File

@ -1,6 +1,6 @@
# Copyright (c) OpenMMLab. All rights reserved
__version__ = '0.21.0'
__version__ = '0.22.0'
def parse_version_info(version_str):