Refactor default hooks configs

pull/913/head
Ezra-Yu 2022-05-23 08:43:23 +00:00 committed by mzr1996
parent 6ad75f0076
commit 2f2aa3037c
110 changed files with 120 additions and 350 deletions

View File

@ -1,16 +1,37 @@
# checkpoint saving
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=100,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
default_scope = 'mmcls'
dist_params = dict(backend='nccl')
default_hooks = dict(
# optimizer configure
optimizer=dict(type='OptimizerHook', grad_clip=None),
# record the time to load data and the time it takes to iterate once
timer=dict(type='IterTimerHook'),
# logger configure
logger=dict(type='LoggerHook', interval=50),
# Parameter Scheduler
param_scheduler=dict(type='ParamSchedulerHook'),
# checkpoint saving
checkpoint=dict(type='CheckpointHook', interval=1),
# Sampler for distributed training
sampler_seed=dict(type='DistSamplerSeedHook'),
)
# Environment configure
env_cfg = dict(
cudnn_benchmark=False,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
dist_cfg=dict(backend='nccl'),
)
# Log level configuration
log_level = 'INFO'
# Load from weight
load_from = None
resume_from = None
workflow = [('train', 1)]
# resume training
resume = False

View File

@ -1,6 +1,5 @@
# optimizer
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='step', step=[100, 150])
runner = dict(type='EpochBasedRunner', max_epochs=200)

View File

@ -1,7 +1,6 @@
# optimizer
optimizer = dict(
type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005, nesterov=True)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='CosineAnnealing',
@ -10,4 +9,5 @@ lr_config = dict(
warmup_iters=5,
warmup_ratio=0.01,
warmup_by_epoch=True)
runner = dict(type='EpochBasedRunner', max_epochs=100)

View File

@ -14,7 +14,6 @@ optimizer = dict(
eps=1e-8,
betas=(0.9, 0.999),
paramwise_cfg=paramwise_cfg)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(

View File

@ -15,7 +15,6 @@ optimizer = dict(
eps=1e-8,
betas=(0.9, 0.999),
paramwise_cfg=paramwise_cfg)
optimizer_config = dict(grad_clip=dict(max_norm=5.0))
# learning policy
lr_config = dict(

View File

@ -1,6 +1,5 @@
# optimizer
optimizer = dict(type='SGD', lr=0.8, momentum=0.9, weight_decay=5e-5)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='CosineAnnealing',

View File

@ -5,7 +5,6 @@ optimizer = dict(
momentum=0.9,
weight_decay=0.00004,
paramwise_cfg=dict(norm_decay_mult=0))
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='poly',

View File

@ -1,7 +1,7 @@
# optimizer
optimizer = dict(
type='SGD', lr=0.8, momentum=0.9, weight_decay=0.0001, nesterov=True)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',

View File

@ -2,7 +2,6 @@
# In ClassyVision, the lr is set to 0.003 for bs4096.
# In this implementation(bs2048), lr = 0.003 / 4096 * (32bs * 64gpus) = 0.0015
optimizer = dict(type='AdamW', lr=0.0015, weight_decay=0.3)
optimizer_config = dict(grad_clip=dict(max_norm=1.0))
# specific to vit pretrain
paramwise_cfg = dict(

View File

@ -1,7 +1,6 @@
# optimizer
optimizer = dict(
type='SGD', lr=0.8, momentum=0.9, weight_decay=0.0001, nesterov=True)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='CosineAnnealing',

View File

@ -1,6 +1,6 @@
# optimizer
optimizer = dict(type='Lamb', lr=0.005, weight_decay=0.02)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='CosineAnnealing',

View File

@ -1,6 +1,5 @@
# optimizer
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='step', step=[30, 60, 90])
runner = dict(type='EpochBasedRunner', max_epochs=100)

View File

@ -1,6 +1,6 @@
# optimizer
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='step', step=[40, 80, 120])
runner = dict(type='EpochBasedRunner', max_epochs=140)

View File

@ -1,6 +1,5 @@
# optimizer
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='CosineAnnealing',

View File

@ -1,6 +1,6 @@
# optimizer
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='CosineAnnealing', min_lr=0)
runner = dict(type='EpochBasedRunner', max_epochs=100)

View File

@ -1,6 +1,5 @@
# optimizer
optimizer = dict(type='SGD', lr=0.045, momentum=0.9, weight_decay=0.00004)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='step', gamma=0.98, step=1)
runner = dict(type='EpochBasedRunner', max_epochs=300)

View File

@ -11,7 +11,6 @@ optimizer = dict(
weight_decay=0.3,
paramwise_cfg=paramwise_cfg,
)
optimizer_config = dict(grad_clip=dict(max_norm=1.0))
# learning policy
lr_config = dict(

View File

@ -5,6 +5,8 @@ _base_ = [
'../_base_/default_runtime.py',
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
optimizer = dict(lr=0.01)
runner = dict(type='EpochBasedRunner', max_epochs=150)

View File

@ -5,6 +5,8 @@ _base_ = [
'../_base_/default_runtime.py',
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
optimizer = dict(lr=0.01)
runner = dict(type='EpochBasedRunner', max_epochs=150)

View File

@ -5,6 +5,8 @@ _base_ = [
'../_base_/default_runtime.py',
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
optimizer = dict(lr=0.01)
runner = dict(type='EpochBasedRunner', max_epochs=300)

View File

@ -5,6 +5,8 @@ _base_ = [
'../_base_/default_runtime.py',
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
data = dict(samples_per_gpu=128)
optimizer = dict(lr=4e-3)

View File

@ -5,6 +5,8 @@ _base_ = [
'../_base_/default_runtime.py',
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
data = dict(samples_per_gpu=64)
optimizer = dict(lr=4e-3)

View File

@ -5,6 +5,8 @@ _base_ = [
'../_base_/default_runtime.py',
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
data = dict(samples_per_gpu=128)
optimizer = dict(lr=4e-3)

View File

@ -5,6 +5,8 @@ _base_ = [
'../_base_/default_runtime.py',
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
data = dict(samples_per_gpu=128)
optimizer = dict(lr=4e-3)

View File

@ -5,6 +5,8 @@ _base_ = [
'../_base_/default_runtime.py',
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
data = dict(samples_per_gpu=64)
optimizer = dict(lr=4e-3)

View File

@ -4,6 +4,8 @@ _base_ = [
'../_base_/default_runtime.py'
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=1.0)))
# model settings
model = dict(
type='ImageClassifier',

View File

@ -6,6 +6,8 @@ _base_ = [
'../_base_/default_runtime.py'
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
# model settings
model = dict(
type='ImageClassifier',

View File

@ -1,6 +0,0 @@
_base_ = '../resnet/resnet50_8xb32-fp16-dynamic_in1k.py'
_deprecation_ = dict(
expected='../resnet/resnet50_8xb32-fp16-dynamic_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -4,3 +4,5 @@ _base_ = [
'../_base_/schedules/imagenet_bs4096_AdamW.py',
'../_base_/default_runtime.py',
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=1.0)))

View File

@ -4,3 +4,5 @@ _base_ = [
'../_base_/schedules/imagenet_bs4096_AdamW.py',
'../_base_/default_runtime.py',
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=1.0)))

View File

@ -1,6 +0,0 @@
_base_ = 'mobilenet-v2_8xb32_in1k.py'
_deprecation_ = dict(
expected='mobilenet-v2_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'mobilenet-v3-large_8xb32_in1k.py'
_deprecation_ = dict(
expected='mobilenet-v3-large_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'mobilenet-v3-small_8xb16_cifar10.py'
_deprecation_ = dict(
expected='mobilenet-v3-small_8xb16_cifar10.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'mobilenet-v3-small_8xb32_in1k.py'
_deprecation_ = dict(
expected='mobilenet-v3-small_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -5,4 +5,6 @@ _base_ = [
'../_base_/default_runtime.py',
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
optimizer = dict(lr=4e-3)

View File

@ -5,4 +5,6 @@ _base_ = [
'../_base_/default_runtime.py',
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
optimizer = dict(lr=4e-3)

View File

@ -5,4 +5,6 @@ _base_ = [
'../_base_/default_runtime.py',
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
optimizer = dict(lr=4e-3)

View File

@ -5,4 +5,6 @@ _base_ = [
'../_base_/default_runtime.py',
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
optimizer = dict(lr=4e-3)

View File

@ -5,4 +5,6 @@ _base_ = [
'../_base_/default_runtime.py',
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
optimizer = dict(lr=4e-3)

View File

@ -5,6 +5,8 @@ _base_ = [
'../_base_/default_runtime.py'
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=1.0)))
model = dict(backbone=dict(img_size=256))
img_norm_cfg = dict(

View File

@ -5,6 +5,8 @@ _base_ = [
'../_base_/default_runtime.py'
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
test_pipeline = [

View File

@ -1,6 +0,0 @@
_base_ = 'resnest101_32xb64_in1k.py'
_deprecation_ = dict(
expected='resnest101_32xb64_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnest200_64xb32_in1k.py'
_deprecation_ = dict(
expected='resnest200_64xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnest269_64xb32_in1k.py'
_deprecation_ = dict(
expected='resnest269_64xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnest50_32xb64_in1k.py'
_deprecation_ = dict(
expected='resnest50_32xb64_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet101_8xb16_cifar10.py'
_deprecation_ = dict(
expected='resnet101_8xb16_cifar10.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet101_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnet101_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet152_8xb16_cifar10.py'
_deprecation_ = dict(
expected='resnet152_8xb16_cifar10.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet152_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnet152_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet18_8xb16_cifar10.py'
_deprecation_ = dict(
expected='resnet18_8xb16_cifar10.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet18_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnet18_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet34_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnet34_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet50_8xb16_cifar100.py'
_deprecation_ = dict(
expected='resnet50_8xb16_cifar100.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet50_8xb16-mixup_cifar10.py'
_deprecation_ = dict(
expected='resnet50_8xb16-mixup_cifar10.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet50_8xb32-coslr_in1k.py'
_deprecation_ = dict(
expected='resnet50_8xb32-coslr_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet50_8xb32-cutmix_in1k.py'
_deprecation_ = dict(
expected='resnet50_8xb32-cutmix_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet50_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnet50_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet50_8xb32-lbs_in1k.py'
_deprecation_ = dict(
expected='resnet50_8xb32-lbs_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet50_8xb32-mixup_in1k.py'
_deprecation_ = dict(
expected='resnet50_8xb32-mixup_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet50_32xb64-warmup-coslr_in1k.py'
_deprecation_ = dict(
expected='resnet50_32xb64-warmup-coslr_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet50_32xb64-warmup_in1k.py'
_deprecation_ = dict(
expected='resnet50_32xb64-warmup_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnet50_32xb64-warmup-lbs_in1k.py'
_deprecation_ = dict(
expected='resnet50_32xb64-warmup-lbs_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnetv1d101_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnetv1d101_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnetv1d152_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnetv1d152_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnetv1d50_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnetv1d50_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnext101-32x4d_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnext101-32x4d_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnext101-32x8d_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnext101-32x8d_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnext152-32x4d_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnext152-32x4d_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'resnext50-32x4d_8xb32_in1k.py'
_deprecation_ = dict(
expected='resnext50-32x4d_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'seresnet101_8xb32_in1k.py'
_deprecation_ = dict(
expected='seresnet101_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'seresnet50_8xb32_in1k.py'
_deprecation_ = dict(
expected='seresnet50_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'seresnext101-32x4d_8xb32_in1k.py'
_deprecation_ = dict(
expected='seresnext101-32x4d_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'seresnext50-32x4d_8xb32_in1k.py'
_deprecation_ = dict(
expected='seresnext50-32x4d_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'shufflenet-v1-1x_16xb64_in1k.py'
_deprecation_ = dict(
expected='shufflenet-v1-1x_16xb64_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -5,3 +5,5 @@ _base_ = [
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py'
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))

View File

@ -4,3 +4,5 @@ _base_ = [
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py'
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))

View File

@ -5,3 +5,5 @@ _base_ = [
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py'
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))

View File

@ -5,3 +5,5 @@ _base_ = [
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py'
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))

View File

@ -4,3 +4,5 @@ _base_ = [
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py'
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))

View File

@ -4,3 +4,5 @@ _base_ = [
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py'
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))

View File

@ -1,6 +0,0 @@
_base_ = 'swin-base_16xb64_in1k.py'
_deprecation_ = dict(
expected='swin-base_16xb64_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'swin-base_16xb64_in1k-384px.py'
_deprecation_ = dict(
expected='swin-base_16xb64_in1k-384px.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'swin-large_16xb64_in1k.py'
_deprecation_ = dict(
expected='swin-large_16xb64_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'swin-large_16xb64_in1k-384px.py'
_deprecation_ = dict(
expected='swin-large_16xb64_in1k-384px.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'swin-small_16xb64_in1k.py'
_deprecation_ = dict(
expected='swin-small_16xb64_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'swin-tiny_16xb64_in1k.py'
_deprecation_ = dict(
expected='swin-tiny_16xb64_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'tnt-s-p16_16xb64_in1k.py'
_deprecation_ = dict(
expected='tnt-s-p16_16xb64_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -5,6 +5,9 @@ _base_ = [
'../_base_/default_runtime.py'
]
default_hooks = dict(
optimizer=dict(_delete_=True, grad_clip=dict(max_norm=5.0)))
data = dict(samples_per_gpu=128)
paramwise_cfg = dict(_delete=True, norm_decay_mult=0.0, bias_decay_mult=0.0)
@ -18,7 +21,6 @@ optimizer = dict(
eps=1e-8,
betas=(0.9, 0.999),
paramwise_cfg=paramwise_cfg)
optimizer_config = dict(_delete_=True, grad_clip=dict(max_norm=5.0))
# learning policy
lr_config = dict(

View File

@ -5,6 +5,9 @@ _base_ = [
'../_base_/default_runtime.py'
]
default_hooks = dict(
optimizer=dict(_delete_=True, grad_clip=dict(max_norm=5.0)))
data = dict(samples_per_gpu=128)
paramwise_cfg = dict(_delete=True, norm_decay_mult=0.0, bias_decay_mult=0.0)
@ -18,9 +21,7 @@ optimizer = dict(
eps=1e-8,
betas=(0.9, 0.999),
paramwise_cfg=paramwise_cfg)
optimizer_config = dict(_delete_=True, grad_clip=dict(max_norm=5.0))
# learning policy
lr_config = dict(
policy='CosineAnnealing',
by_epoch=True,

View File

@ -5,6 +5,8 @@ _base_ = [
'../_base_/default_runtime.py'
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
# Note that the mean and variance used here are different from other configs
img_norm_cfg = dict(
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)

View File

@ -5,6 +5,8 @@ _base_ = [
'../_base_/default_runtime.py'
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
# Note that the mean and variance used here are different from other configs
img_norm_cfg = dict(
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)

View File

@ -5,6 +5,8 @@ _base_ = [
'../_base_/default_runtime.py'
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
# Note that the mean and variance used here are different from other configs
img_norm_cfg = dict(
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)

View File

@ -5,6 +5,8 @@ _base_ = [
'../_base_/default_runtime.py'
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=5.0)))
# Note that the mean and variance used here are different from other configs
img_norm_cfg = dict(
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)

View File

@ -1,6 +0,0 @@
_base_ = 'vgg11_8xb32_in1k.py'
_deprecation_ = dict(
expected='vgg11_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'vgg11bn_8xb32_in1k.py'
_deprecation_ = dict(
expected='vgg11bn_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'vgg13_8xb32_in1k.py'
_deprecation_ = dict(
expected='vgg13_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'vgg13bn_8xb32_in1k.py'
_deprecation_ = dict(
expected='vgg13bn_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -22,4 +22,5 @@ optimizer = dict(
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='step', step=20, gamma=0.1)
runner = dict(type='EpochBasedRunner', max_epochs=40)

View File

@ -1,6 +0,0 @@
_base_ = 'vgg16_8xb32_in1k.py'
_deprecation_ = dict(
expected='vgg16_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

View File

@ -1,6 +0,0 @@
_base_ = 'vgg16bn_8xb32_in1k.py'
_deprecation_ = dict(
expected='vgg16bn_8xb32_in1k.py',
reference='https://github.com/open-mmlab/mmclassification/pull/508',
)

Some files were not shown because too many files have changed in this diff Show More