[CodeCamp2023-339] New Version of `config` Adapting Vision Transformer Algorithm (#1727)

* add old config

* add old config

* add old config

* renew vit-base-p16_64xb64_in1k.py

* rename

* finish vit_base_p16_64xb64_in1k_384px.py

* finish vit_base_p32_64xb64_in1k.py and 384px

* finish 4 vit_large*.py

* finish vit_base_p16_32xb128_mae_in1k.py

* add vit_base_p16_4xb544_ipu_in1k.py

* modify data_root

* using  to modify cfg

* pre-commit check

* ignore ipu

* keep other files no change

* remove redefinition

* only keep vit_base_p16.py

* move init_cfg into model.update
pull/1685/merge
Zeyuan 2023-08-02 06:06:08 +04:00 committed by GitHub
parent 340d187765
commit 2fb52eefdc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 645 additions and 1 deletions

View File

@ -9,7 +9,7 @@ from mmpretrain.datasets import (ColorJitter, GaussianBlur, ImageNet,
from mmpretrain.models import SelfSupDataPreprocessor
# dataset settings
dataset_type = 'ImageNet'
dataset_type = ImageNet
data_root = 'data/imagenet/'
data_preprocessor = dict(
type=SelfSupDataPreprocessor,

View File

@ -0,0 +1,60 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.dataset import DefaultSampler
from mmpretrain.datasets import (CenterCrop, ImageNet, LoadImageFromFile,
PackInputs, RandomFlip, RandomResizedCrop,
ResizeEdge)
from mmpretrain.evaluation import Accuracy
# dataset settings
dataset_type = ImageNet
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
train_pipeline = [
dict(type=LoadImageFromFile),
dict(type=RandomResizedCrop, scale=224, backend='pillow'),
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
dict(type=PackInputs),
]
test_pipeline = [
dict(type=LoadImageFromFile),
dict(type=ResizeEdge, scale=256, edge='short', backend='pillow'),
dict(type=CenterCrop, crop_size=224),
dict(type=PackInputs),
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type=DefaultSampler, shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type=DefaultSampler, shuffle=False),
)
val_evaluator = dict(type=Accuracy, topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator

View File

@ -0,0 +1,78 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.dataset import DefaultSampler
from mmpretrain.datasets import (CenterCrop, ImageNet, LoadImageFromFile,
PackInputs, RandomFlip, RandomResizedCrop,
ResizeEdge)
from mmpretrain.datasets.transforms import AutoAugment
from mmpretrain.evaluation import Accuracy
# dataset settings
dataset_type = ImageNet
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]
train_pipeline = [
dict(type=LoadImageFromFile),
dict(
type=RandomResizedCrop,
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
dict(
type=AutoAugment,
policies='imagenet',
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(type=PackInputs),
]
test_pipeline = [
dict(type=LoadImageFromFile),
dict(
type=ResizeEdge,
scale=256,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type=CenterCrop, crop_size=224),
dict(type=PackInputs),
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type=DefaultSampler, shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type=DefaultSampler, shuffle=False),
)
val_evaluator = dict(type=Accuracy, topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator

View File

@ -0,0 +1,89 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.dataset import DefaultSampler
from mmpretrain.datasets import (CenterCrop, ImageNet, LoadImageFromFile,
PackInputs, RandAugment, RandomErasing,
RandomFlip, RandomResizedCrop, ResizeEdge)
from mmpretrain.evaluation import Accuracy
# dataset settings
dataset_type = ImageNet
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)
bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]
train_pipeline = [
dict(type=LoadImageFromFile),
dict(
type=RandomResizedCrop,
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
dict(
type=RandAugment,
policies='timm_increasing',
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(
type=RandomErasing,
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type=PackInputs),
]
test_pipeline = [
dict(type=LoadImageFromFile),
dict(
type=ResizeEdge,
scale=256,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type=CenterCrop, crop_size=224),
dict(type=PackInputs),
]
train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type=DefaultSampler, shuffle=True),
)
val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type=DefaultSampler, shuffle=False),
)
val_evaluator = dict(type=Accuracy, topk=(1, 5))
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator

View File

@ -0,0 +1,31 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.model.weight_init import KaimingInit
from mmpretrain.models import (ImageClassifier, LabelSmoothLoss,
VisionTransformer, VisionTransformerClsHead)
# model settings
model = dict(
type=ImageClassifier,
backbone=dict(
type=VisionTransformer,
arch='b',
img_size=224,
patch_size=16,
drop_rate=0.1,
init_cfg=[
dict(
type=KaimingInit,
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]),
neck=None,
head=dict(
type=VisionTransformerClsHead,
num_classes=1000,
in_channels=768,
loss=dict(
type=LabelSmoothLoss, label_smooth_val=0.1, mode='classy_vision'),
))

View File

@ -0,0 +1,44 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.optim import CosineAnnealingLR, LinearLR
from torch.optim import AdamW
# optimizer
optim_wrapper = dict(
optimizer=dict(type=AdamW, lr=0.003, weight_decay=0.3),
# specific to vit pretrain
paramwise_cfg=dict(custom_keys={
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0)
}),
)
# learning policy
param_scheduler = [
# warm up learning rate scheduler
dict(
type=LinearLR,
start_factor=1e-4,
by_epoch=True,
begin=0,
end=30,
# update by iter
convert_to_iter_based=True),
# main learning rate scheduler
dict(
type=CosineAnnealingLR,
T_max=270,
by_epoch=True,
begin=30,
end=300,
)
]
# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=300, val_interval=1)
val_cfg = dict()
test_cfg = dict()
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=4096)

View File

@ -0,0 +1,52 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmengine.model import ConstantInit, TruncNormalInit
from torch.optim import AdamW
from mmpretrain.engine import EMAHook
from mmpretrain.models import CutMix, Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_swin_224 import *
from .._base_.default_runtime import *
from .._base_.models.vit_base_p16 import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
model.update(
backbone=dict(drop_rate=0, drop_path_rate=0.1, init_cfg=None),
head=dict(loss=dict(mode='original')),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=.02),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))
# dataset settings
train_dataloader.update(batch_size=128)
# schedule settings
optim_wrapper.update(
optimizer=dict(
type=AdamW,
lr=1e-4 * 4096 / 256,
weight_decay=0.3,
eps=1e-8,
betas=(0.9, 0.95)),
paramwise_cfg=dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
custom_keys={
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0)
}))
# runtime settings
custom_hooks = [dict(type=EMAHook, momentum=1e-4)]
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
# base_batch_size = (32 GPUs) x (128 samples per GPU)
auto_scale_lr.update(base_batch_size=4096)

View File

@ -0,0 +1,20 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmpretrain.models import Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_pil_resize_autoaug import *
from .._base_.default_runtime import *
from .._base_.models.vit_base_p16 import *
from .._base_.schedules.imagenet_bs4096_adamw import *
# model setting
model.update(
head=dict(hidden_dim=3072),
train_cfg=dict(augments=dict(type=Mixup, alpha=0.2)),
)
# schedule setting
optim_wrapper.update(clip_grad=dict(max_norm=1.0))

View File

@ -0,0 +1,44 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmpretrain.datasets import (CenterCrop, LoadImageFromFile, PackInputs,
RandomFlip, RandomResizedCrop, ResizeEdge)
with read_base():
from .._base_.datasets.imagenet_bs64_pil_resize import *
from .._base_.default_runtime import *
from .._base_.models.vit_base_p16 import *
from .._base_.schedules.imagenet_bs4096_adamw import *
# model setting
model.update(backbone=dict(img_size=384))
# dataset setting
data_preprocessor.update(
mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5],
# convert image from BGR to RGB
to_rgb=True,
)
train_pipeline = [
dict(type=LoadImageFromFile),
dict(type=RandomResizedCrop, scale=384, backend='pillow'),
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
dict(type=PackInputs),
]
test_pipeline = [
dict(type=LoadImageFromFile),
dict(type=ResizeEdge, scale=384, edge='short', backend='pillow'),
dict(type=CenterCrop, crop_size=384),
dict(type=PackInputs),
]
train_dataloader.update(dataset=dict(pipeline=train_pipeline))
val_dataloader.update(dataset=dict(pipeline=test_pipeline))
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
# schedule setting
optim_wrapper.update(clip_grad=dict(max_norm=1.0))

View File

@ -0,0 +1,26 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmpretrain.models import CrossEntropyLoss, Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_pil_resize_autoaug import *
from .._base_.default_runtime import *
from .._base_.models.vit_base_p16 import *
from .._base_.schedules.imagenet_bs4096_adamw import *
# model setting
model.update(
backbone=dict(patch_size=32),
head=dict(
hidden_dim=3072,
topk=(1, 5),
),
train_cfg=dict(augments=dict(type=Mixup, alpha=0.2)),
)
model.head.loss = dict(type=CrossEntropyLoss, loss_weight=1.0)
# schedule setting
optim_wrapper.update(clip_grad=dict(max_norm=1.0))

View File

@ -0,0 +1,48 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmpretrain.datasets import (CenterCrop, LoadImageFromFile, PackInputs,
RandomFlip, RandomResizedCrop, ResizeEdge)
from mmpretrain.models import CrossEntropyLoss
with read_base():
from .._base_.datasets.imagenet_bs64_pil_resize import *
from .._base_.default_runtime import *
from .._base_.models.vit_base_p16 import *
from .._base_.schedules.imagenet_bs4096_adamw import *
# model setting
model.update(
backbone=dict(img_size=384, patch_size=32), head=dict(topk=(1, 5)))
model.head.loss = dict(type=CrossEntropyLoss, loss_weight=1.0)
# dataset setting
data_preprocessor.update(
mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5],
# convert image from BGR to RGB
to_rgb=True,
)
train_pipeline = [
dict(type=LoadImageFromFile),
dict(type=RandomResizedCrop, scale=384, backend='pillow'),
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
dict(type=PackInputs),
]
test_pipeline = [
dict(type=LoadImageFromFile),
dict(type=ResizeEdge, scale=384, edge='short', backend='pillow'),
dict(type=CenterCrop, crop_size=384),
dict(type=PackInputs),
]
train_dataloader.update(dataset=dict(pipeline=train_pipeline))
val_dataloader.update(dataset=dict(pipeline=test_pipeline))
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
# schedule setting
optim_wrapper.update(clip_grad=dict(max_norm=1.0))

View File

@ -0,0 +1,27 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmpretrain.models import CrossEntropyLoss, Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_pil_resize_autoaug import *
from .._base_.default_runtime import *
from .._base_.models.vit_base_p16 import *
from .._base_.schedules.imagenet_bs4096_adamw import *
# model setting
model.update(
backbone=dict(arch='l'),
head=dict(
hidden_dim=3072,
in_channels=1024,
topk=(1, 5),
),
train_cfg=dict(augments=dict(type=Mixup, alpha=0.2)),
)
model.head.loss = dict(type=CrossEntropyLoss, loss_weight=1.0)
# schedule setting
optim_wrapper.update(clip_grad=dict(max_norm=1.0))

View File

@ -0,0 +1,49 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmpretrain.datasets import (CenterCrop, LoadImageFromFile, PackInputs,
RandomFlip, RandomResizedCrop, ResizeEdge)
from mmpretrain.models import CrossEntropyLoss
with read_base():
from .._base_.datasets.imagenet_bs64_pil_resize import *
from .._base_.default_runtime import *
from .._base_.models.vit_base_p16 import *
from .._base_.schedules.imagenet_bs4096_adamw import *
# model setting
model.update(
backbone=dict(arch='l', img_size=384),
head=dict(in_channels=1024, topk=(1, 5)))
model.head.loss = dict(type=CrossEntropyLoss, loss_weight=1.0)
# dataset setting
data_preprocessor.update(
mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5],
# convert image from BGR to RGB
to_rgb=True,
)
train_pipeline = [
dict(type=LoadImageFromFile),
dict(type=RandomResizedCrop, scale=384, backend='pillow'),
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
dict(type=PackInputs),
]
test_pipeline = [
dict(type=LoadImageFromFile),
dict(type=ResizeEdge, scale=384, edge='short', backend='pillow'),
dict(type=CenterCrop, crop_size=384),
dict(type=PackInputs),
]
train_dataloader.update(dataset=dict(pipeline=train_pipeline))
val_dataloader.update(dataset=dict(pipeline=test_pipeline))
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
# schedule setting
optim_wrapper.update(clip_grad=dict(max_norm=1.0))

View File

@ -0,0 +1,27 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmpretrain.models import CrossEntropyLoss, Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_pil_resize_autoaug import *
from .._base_.default_runtime import *
from .._base_.models.vit_base_p16 import *
from .._base_.schedules.imagenet_bs4096_adamw import *
# model setting
model.update(
backbone=dict(arch='l', patch_size=32),
head=dict(
hidden_dim=3072,
in_channels=1024,
topk=(1, 5),
),
train_cfg=dict(augments=dict(type=Mixup, alpha=0.2)),
)
loss = dict(type=CrossEntropyLoss, loss_weight=1.0)
# schedule setting
optim_wrapper.update(clip_grad=dict(max_norm=1.0))

View File

@ -0,0 +1,49 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmpretrain.datasets import (CenterCrop, LoadImageFromFile, PackInputs,
RandomFlip, RandomResizedCrop, ResizeEdge)
from mmpretrain.models import CrossEntropyLoss
with read_base():
from .._base_.datasets.imagenet_bs64_pil_resize import *
from .._base_.default_runtime import *
from .._base_.models.vit_base_p16 import *
from .._base_.schedules.imagenet_bs4096_adamw import *
# model setting
model.update(
backbone=dict(arch='l', img_size=384, patch_size=32),
head=dict(in_channels=1024, topk=(1, 5)))
model.head.loss = dict(type=CrossEntropyLoss, loss_weight=1.0)
# dataset setting
data_preprocessor.update(
mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5],
# convert image from BGR to RGB
to_rgb=True,
)
train_pipeline = [
dict(type=LoadImageFromFile),
dict(type=RandomResizedCrop, scale=384, backend='pillow'),
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
dict(type=PackInputs),
]
test_pipeline = [
dict(type=LoadImageFromFile),
dict(type=ResizeEdge, scale=384, edge='short', backend='pillow'),
dict(type=CenterCrop, crop_size=384),
dict(type=PackInputs),
]
train_dataloader.update(dataset=dict(pipeline=train_pipeline))
val_dataloader.update(dataset=dict(pipeline=test_pipeline))
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
# schedule setting
optim_wrapper.update(clip_grad=dict(max_norm=1.0))