[Improve] Rename `mmcls.data` to `mmcls.structures`. (#941)

pull/977/head
Ma Zerun 2022-07-29 14:18:13 +08:00 committed by GitHub
parent 17b24a8230
commit 43e60ad5a6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
23 changed files with 26 additions and 26 deletions

View File

@ -9,8 +9,8 @@ from mmcv.parallel import DataContainer as DC
from mmcv.transforms.base import BaseTransform
from PIL import Image
from mmcls.data import ClsDataSample
from mmcls.registry import TRANSFORMS
from mmcls.structures import ClsDataSample
def to_tensor(data):

View File

@ -8,8 +8,8 @@ from mmengine.hooks import Hook
from mmengine.runner import EpochBasedTrainLoop, Runner
from mmengine.visualization import Visualizer
from mmcls.data import ClsDataSample
from mmcls.registry import HOOKS
from mmcls.structures import ClsDataSample
@HOOKS.register_module()

View File

@ -93,7 +93,7 @@ class MultiLabelMetric(BaseMetric):
(tensor(62.5000), tensor(31.2500), tensor(39.1667), tensor(8))
>>>
>>> # ------------------- Use with Evalutor -------------------
>>> from mmcls.data import ClsDataSample
>>> from mmcls.structures import ClsDataSample
>>> from mmengine.evaluator import Evaluator
>>> # The `data_batch` won't be used in this case, just use a fake.
>>> data_batch = [
@ -457,7 +457,7 @@ class AveragePrecision(BaseMetric):
>>> AveragePrecision.calculate(y_pred, y_true)
tensor(70.833)
>>> # ------------------- Use with Evalutor -------------------
>>> from mmcls.data import ClsDataSample
>>> from mmcls.structures import ClsDataSample
>>> from mmengine.evaluator import Evaluator
>>> # The `data_batch` won't be used in this case, just use a fake.
>>> data_batch = [

View File

@ -86,7 +86,7 @@ class Accuracy(BaseMetric):
[[tensor([9.9000])], [tensor([51.5000])]]
>>>
>>> # ------------------- Use with Evalutor -------------------
>>> from mmcls.data import ClsDataSample
>>> from mmcls.structures import ClsDataSample
>>> from mmengine.evaluator import Evaluator
>>> data_batch = [{
... 'inputs': None, # In this example, the `inputs` is not used.
@ -335,7 +335,7 @@ class SingleLabelMetric(BaseMetric):
tensor(1000))]
>>>
>>> # ------------------- Use with Evalutor -------------------
>>> from mmcls.data import ClsDataSample
>>> from mmcls.structures import ClsDataSample
>>> from mmengine.evaluator import Evaluator
>>> data_batch = [{
... 'inputs': None, # In this example, the `inputs` is not used.

View File

@ -3,8 +3,8 @@ from typing import List, Optional
import torch
from mmcls.data import ClsDataSample
from mmcls.registry import MODELS
from mmcls.structures import ClsDataSample
from .base import BaseClassifier
@ -100,7 +100,7 @@ class ImageClassifier(BaseClassifier):
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of
:obj:`mmcls.data.ClsDataSample`.
:obj:`mmcls.structures.ClsDataSample`.
- If ``mode="loss"``, return a dict of tensor.
"""
if mode == 'tensor':

View File

@ -4,9 +4,9 @@ from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from mmcls.data import ClsDataSample
from mmcls.evaluation.metrics import Accuracy
from mmcls.registry import MODELS
from mmcls.structures import ClsDataSample
from .base_head import BaseHead

View File

@ -4,9 +4,9 @@ from typing import List, Sequence, Tuple
import torch
import torch.nn as nn
from mmcls.data import ClsDataSample
from mmcls.evaluation.metrics import Accuracy
from mmcls.registry import MODELS
from mmcls.structures import ClsDataSample
from .cls_head import ClsHead

View File

@ -4,8 +4,8 @@ from typing import Dict, List, Optional, Tuple
import torch
from mmengine.data import LabelData
from mmcls.data import ClsDataSample
from mmcls.registry import MODELS
from mmcls.structures import ClsDataSample
from .base_head import BaseHead

View File

@ -5,8 +5,8 @@ import numpy as np
import torch
from mmengine.data import LabelData
from mmcls.data import ClsDataSample
from mmcls.registry import BATCH_AUGMENTS
from mmcls.structures import ClsDataSample
@BATCH_AUGMENTS.register_module()

View File

@ -70,7 +70,7 @@ class ClsDataSample(BaseDataElement):
Examples:
>>> import torch
>>> from mmcls.data import ClsDataSample
>>> from mmcls.structures import ClsDataSample
>>>
>>> img_meta = dict(img_shape=(960, 720), num_classes=5)
>>> data_sample = ClsDataSample(metainfo=img_meta)

View File

@ -73,11 +73,11 @@ def register_all_modules(init_default_scope: bool = True) -> None:
https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md
Defaults to True.
""" # noqa
import mmcls.data # noqa: F401,F403
import mmcls.datasets # noqa: F401,F403
import mmcls.engine # noqa: F401,F403
import mmcls.evaluation # noqa: F401,F403
import mmcls.models # noqa: F401,F403
import mmcls.structures # noqa: F401,F403
import mmcls.visualization # noqa: F401,F403
if not init_default_scope:

View File

@ -6,8 +6,8 @@ import numpy as np
from mmengine import Visualizer
from mmengine.dist import master_only
from mmcls.data import ClsDataSample
from mmcls.registry import VISUALIZERS
from mmcls.structures import ClsDataSample
def _get_adaptive_scale(img_shape: Tuple[int, int],
@ -57,7 +57,7 @@ class ClsVisualizer(Visualizer):
>>> import mmcv
>>> from pathlib import Path
>>> from mmcls.visualization import ClsVisualizer
>>> from mmcls.data import ClsDataSample
>>> from mmcls.structures import ClsDataSample
>>> # Example image
>>> img = mmcv.imread("./demo/bird.JPEG", channel_order='rgb')
>>> # Example annotation

View File

@ -7,8 +7,8 @@ import numpy as np
import torch
from mmengine.data import LabelData
from mmcls.data import ClsDataSample
from mmcls.datasets.pipelines import PackClsInputs
from mmcls.structures import ClsDataSample
class TestPackClsInputs(unittest.TestCase):

View File

@ -7,9 +7,9 @@ from unittest.mock import ANY, MagicMock, patch
import torch
from mmengine.runner import EpochBasedTrainLoop, IterBasedTrainLoop
from mmcls.data import ClsDataSample
from mmcls.engine import VisualizationHook
from mmcls.registry import HOOKS
from mmcls.structures import ClsDataSample
from mmcls.utils import register_all_modules
from mmcls.visualization import ClsVisualizer

View File

@ -6,8 +6,8 @@ import sklearn.metrics
import torch
from mmengine.evaluator import Evaluator
from mmcls.data import ClsDataSample
from mmcls.evaluation.metrics import AveragePrecision, MultiLabelMetric
from mmcls.structures import ClsDataSample
from mmcls.utils import register_all_modules
register_all_modules()

View File

@ -5,9 +5,9 @@ from unittest import TestCase
import numpy as np
import torch
from mmcls.data import ClsDataSample
from mmcls.evaluation.metrics import Accuracy, SingleLabelMetric
from mmcls.registry import METRICS
from mmcls.structures import ClsDataSample
class TestAccuracy(TestCase):

View File

@ -5,9 +5,9 @@ from unittest.mock import MagicMock
import torch
from mmengine import ConfigDict
from mmcls.data import ClsDataSample
from mmcls.models import ImageClassifier
from mmcls.registry import MODELS
from mmcls.structures import ClsDataSample
from mmcls.utils import register_all_modules
register_all_modules()

View File

@ -7,8 +7,8 @@ import numpy as np
import torch
from mmengine import is_seq_of
from mmcls.data import ClsDataSample
from mmcls.registry import MODELS
from mmcls.structures import ClsDataSample
from mmcls.utils import register_all_modules
register_all_modules()

View File

@ -5,9 +5,9 @@ from unittest.mock import MagicMock, patch
import numpy as np
import torch
from mmcls.data import ClsDataSample
from mmcls.models import Mixup, RandomBatchAugment
from mmcls.registry import BATCH_AUGMENTS
from mmcls.structures import ClsDataSample
class TestRandomBatchAugment(TestCase):

View File

@ -3,9 +3,9 @@ from unittest import TestCase
import torch
from mmcls.data import ClsDataSample
from mmcls.models import ClsDataPreprocessor, RandomBatchAugment
from mmcls.registry import MODELS
from mmcls.structures import ClsDataSample
from mmcls.utils import register_all_modules
register_all_modules()

View File

@ -5,7 +5,7 @@ import numpy as np
import torch
from mmengine.data import LabelData
from mmcls.data import ClsDataSample
from mmcls.structures import ClsDataSample
class TestClsDataSample(TestCase):

View File

@ -7,7 +7,7 @@ from unittest.mock import patch
import numpy as np
import torch
from mmcls.data import ClsDataSample
from mmcls.structures import ClsDataSample
from mmcls.visualization import ClsVisualizer