[Improve] Rename `mmcls.data` to `mmcls.structures`. (#941)
parent
17b24a8230
commit
43e60ad5a6
|
@ -9,8 +9,8 @@ from mmcv.parallel import DataContainer as DC
|
|||
from mmcv.transforms.base import BaseTransform
|
||||
from PIL import Image
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.registry import TRANSFORMS
|
||||
from mmcls.structures import ClsDataSample
|
||||
|
||||
|
||||
def to_tensor(data):
|
||||
|
|
|
@ -8,8 +8,8 @@ from mmengine.hooks import Hook
|
|||
from mmengine.runner import EpochBasedTrainLoop, Runner
|
||||
from mmengine.visualization import Visualizer
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.registry import HOOKS
|
||||
from mmcls.structures import ClsDataSample
|
||||
|
||||
|
||||
@HOOKS.register_module()
|
||||
|
|
|
@ -93,7 +93,7 @@ class MultiLabelMetric(BaseMetric):
|
|||
(tensor(62.5000), tensor(31.2500), tensor(39.1667), tensor(8))
|
||||
>>>
|
||||
>>> # ------------------- Use with Evalutor -------------------
|
||||
>>> from mmcls.data import ClsDataSample
|
||||
>>> from mmcls.structures import ClsDataSample
|
||||
>>> from mmengine.evaluator import Evaluator
|
||||
>>> # The `data_batch` won't be used in this case, just use a fake.
|
||||
>>> data_batch = [
|
||||
|
@ -457,7 +457,7 @@ class AveragePrecision(BaseMetric):
|
|||
>>> AveragePrecision.calculate(y_pred, y_true)
|
||||
tensor(70.833)
|
||||
>>> # ------------------- Use with Evalutor -------------------
|
||||
>>> from mmcls.data import ClsDataSample
|
||||
>>> from mmcls.structures import ClsDataSample
|
||||
>>> from mmengine.evaluator import Evaluator
|
||||
>>> # The `data_batch` won't be used in this case, just use a fake.
|
||||
>>> data_batch = [
|
||||
|
|
|
@ -86,7 +86,7 @@ class Accuracy(BaseMetric):
|
|||
[[tensor([9.9000])], [tensor([51.5000])]]
|
||||
>>>
|
||||
>>> # ------------------- Use with Evalutor -------------------
|
||||
>>> from mmcls.data import ClsDataSample
|
||||
>>> from mmcls.structures import ClsDataSample
|
||||
>>> from mmengine.evaluator import Evaluator
|
||||
>>> data_batch = [{
|
||||
... 'inputs': None, # In this example, the `inputs` is not used.
|
||||
|
@ -335,7 +335,7 @@ class SingleLabelMetric(BaseMetric):
|
|||
tensor(1000))]
|
||||
>>>
|
||||
>>> # ------------------- Use with Evalutor -------------------
|
||||
>>> from mmcls.data import ClsDataSample
|
||||
>>> from mmcls.structures import ClsDataSample
|
||||
>>> from mmengine.evaluator import Evaluator
|
||||
>>> data_batch = [{
|
||||
... 'inputs': None, # In this example, the `inputs` is not used.
|
||||
|
|
|
@ -3,8 +3,8 @@ from typing import List, Optional
|
|||
|
||||
import torch
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.registry import MODELS
|
||||
from mmcls.structures import ClsDataSample
|
||||
from .base import BaseClassifier
|
||||
|
||||
|
||||
|
@ -100,7 +100,7 @@ class ImageClassifier(BaseClassifier):
|
|||
|
||||
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
|
||||
- If ``mode="predict"``, return a list of
|
||||
:obj:`mmcls.data.ClsDataSample`.
|
||||
:obj:`mmcls.structures.ClsDataSample`.
|
||||
- If ``mode="loss"``, return a dict of tensor.
|
||||
"""
|
||||
if mode == 'tensor':
|
||||
|
|
|
@ -4,9 +4,9 @@ from typing import List, Optional, Tuple, Union
|
|||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.evaluation.metrics import Accuracy
|
||||
from mmcls.registry import MODELS
|
||||
from mmcls.structures import ClsDataSample
|
||||
from .base_head import BaseHead
|
||||
|
||||
|
||||
|
|
|
@ -4,9 +4,9 @@ from typing import List, Sequence, Tuple
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.evaluation.metrics import Accuracy
|
||||
from mmcls.registry import MODELS
|
||||
from mmcls.structures import ClsDataSample
|
||||
from .cls_head import ClsHead
|
||||
|
||||
|
||||
|
|
|
@ -4,8 +4,8 @@ from typing import Dict, List, Optional, Tuple
|
|||
import torch
|
||||
from mmengine.data import LabelData
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.registry import MODELS
|
||||
from mmcls.structures import ClsDataSample
|
||||
from .base_head import BaseHead
|
||||
|
||||
|
||||
|
|
|
@ -5,8 +5,8 @@ import numpy as np
|
|||
import torch
|
||||
from mmengine.data import LabelData
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.registry import BATCH_AUGMENTS
|
||||
from mmcls.structures import ClsDataSample
|
||||
|
||||
|
||||
@BATCH_AUGMENTS.register_module()
|
||||
|
|
|
@ -70,7 +70,7 @@ class ClsDataSample(BaseDataElement):
|
|||
|
||||
Examples:
|
||||
>>> import torch
|
||||
>>> from mmcls.data import ClsDataSample
|
||||
>>> from mmcls.structures import ClsDataSample
|
||||
>>>
|
||||
>>> img_meta = dict(img_shape=(960, 720), num_classes=5)
|
||||
>>> data_sample = ClsDataSample(metainfo=img_meta)
|
|
@ -73,11 +73,11 @@ def register_all_modules(init_default_scope: bool = True) -> None:
|
|||
https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md
|
||||
Defaults to True.
|
||||
""" # noqa
|
||||
import mmcls.data # noqa: F401,F403
|
||||
import mmcls.datasets # noqa: F401,F403
|
||||
import mmcls.engine # noqa: F401,F403
|
||||
import mmcls.evaluation # noqa: F401,F403
|
||||
import mmcls.models # noqa: F401,F403
|
||||
import mmcls.structures # noqa: F401,F403
|
||||
import mmcls.visualization # noqa: F401,F403
|
||||
|
||||
if not init_default_scope:
|
||||
|
|
|
@ -6,8 +6,8 @@ import numpy as np
|
|||
from mmengine import Visualizer
|
||||
from mmengine.dist import master_only
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.registry import VISUALIZERS
|
||||
from mmcls.structures import ClsDataSample
|
||||
|
||||
|
||||
def _get_adaptive_scale(img_shape: Tuple[int, int],
|
||||
|
@ -57,7 +57,7 @@ class ClsVisualizer(Visualizer):
|
|||
>>> import mmcv
|
||||
>>> from pathlib import Path
|
||||
>>> from mmcls.visualization import ClsVisualizer
|
||||
>>> from mmcls.data import ClsDataSample
|
||||
>>> from mmcls.structures import ClsDataSample
|
||||
>>> # Example image
|
||||
>>> img = mmcv.imread("./demo/bird.JPEG", channel_order='rgb')
|
||||
>>> # Example annotation
|
||||
|
|
|
@ -7,8 +7,8 @@ import numpy as np
|
|||
import torch
|
||||
from mmengine.data import LabelData
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.datasets.pipelines import PackClsInputs
|
||||
from mmcls.structures import ClsDataSample
|
||||
|
||||
|
||||
class TestPackClsInputs(unittest.TestCase):
|
||||
|
|
|
@ -7,9 +7,9 @@ from unittest.mock import ANY, MagicMock, patch
|
|||
import torch
|
||||
from mmengine.runner import EpochBasedTrainLoop, IterBasedTrainLoop
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.engine import VisualizationHook
|
||||
from mmcls.registry import HOOKS
|
||||
from mmcls.structures import ClsDataSample
|
||||
from mmcls.utils import register_all_modules
|
||||
from mmcls.visualization import ClsVisualizer
|
||||
|
||||
|
|
|
@ -6,8 +6,8 @@ import sklearn.metrics
|
|||
import torch
|
||||
from mmengine.evaluator import Evaluator
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.evaluation.metrics import AveragePrecision, MultiLabelMetric
|
||||
from mmcls.structures import ClsDataSample
|
||||
from mmcls.utils import register_all_modules
|
||||
|
||||
register_all_modules()
|
||||
|
|
|
@ -5,9 +5,9 @@ from unittest import TestCase
|
|||
import numpy as np
|
||||
import torch
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.evaluation.metrics import Accuracy, SingleLabelMetric
|
||||
from mmcls.registry import METRICS
|
||||
from mmcls.structures import ClsDataSample
|
||||
|
||||
|
||||
class TestAccuracy(TestCase):
|
||||
|
|
|
@ -5,9 +5,9 @@ from unittest.mock import MagicMock
|
|||
import torch
|
||||
from mmengine import ConfigDict
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.models import ImageClassifier
|
||||
from mmcls.registry import MODELS
|
||||
from mmcls.structures import ClsDataSample
|
||||
from mmcls.utils import register_all_modules
|
||||
|
||||
register_all_modules()
|
||||
|
|
|
@ -7,8 +7,8 @@ import numpy as np
|
|||
import torch
|
||||
from mmengine import is_seq_of
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.registry import MODELS
|
||||
from mmcls.structures import ClsDataSample
|
||||
from mmcls.utils import register_all_modules
|
||||
|
||||
register_all_modules()
|
||||
|
|
|
@ -5,9 +5,9 @@ from unittest.mock import MagicMock, patch
|
|||
import numpy as np
|
||||
import torch
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.models import Mixup, RandomBatchAugment
|
||||
from mmcls.registry import BATCH_AUGMENTS
|
||||
from mmcls.structures import ClsDataSample
|
||||
|
||||
|
||||
class TestRandomBatchAugment(TestCase):
|
||||
|
|
|
@ -3,9 +3,9 @@ from unittest import TestCase
|
|||
|
||||
import torch
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.models import ClsDataPreprocessor, RandomBatchAugment
|
||||
from mmcls.registry import MODELS
|
||||
from mmcls.structures import ClsDataSample
|
||||
from mmcls.utils import register_all_modules
|
||||
|
||||
register_all_modules()
|
||||
|
|
|
@ -5,7 +5,7 @@ import numpy as np
|
|||
import torch
|
||||
from mmengine.data import LabelData
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.structures import ClsDataSample
|
||||
|
||||
|
||||
class TestClsDataSample(TestCase):
|
|
@ -7,7 +7,7 @@ from unittest.mock import patch
|
|||
import numpy as np
|
||||
import torch
|
||||
|
||||
from mmcls.data import ClsDataSample
|
||||
from mmcls.structures import ClsDataSample
|
||||
from mmcls.visualization import ClsVisualizer
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue