ram init commit
parent
bb59c9ad82
commit
51a2a15f1e
|
@ -11,13 +11,29 @@ if WITH_MULTIMODAL:
|
|||
from .minigpt4 import * # noqa: F401, F403
|
||||
from .ofa import * # noqa: F401, F403
|
||||
from .otter import * # noqa: F401, F403
|
||||
from .ram import * # noqa: F401, F403
|
||||
else:
|
||||
from mmpretrain.registry import MODELS
|
||||
from mmpretrain.utils.dependency import register_multimodal_placeholder
|
||||
|
||||
register_multimodal_placeholder([
|
||||
'Blip2Caption', 'Blip2Retrieval', 'Blip2VQA', 'BlipCaption',
|
||||
'BlipNLVR', 'BlipRetrieval', 'BlipGrounding', 'BlipVQA', 'Flamingo',
|
||||
'OFA', 'ChineseCLIP', 'MiniGPT4', 'Llava', 'Otter', 'CLIP',
|
||||
'CLIPZeroShot'
|
||||
'Blip2Caption',
|
||||
'Blip2Retrieval',
|
||||
'Blip2VQA',
|
||||
'BlipCaption',
|
||||
'BlipNLVR',
|
||||
'BlipRetrieval',
|
||||
'BlipGrounding',
|
||||
'BlipVQA',
|
||||
'Flamingo',
|
||||
'OFA',
|
||||
'ChineseCLIP',
|
||||
'MiniGPT4',
|
||||
'Llava',
|
||||
'Otter',
|
||||
'CLIP',
|
||||
'CLIPZeroShot',
|
||||
'RAM',
|
||||
'RAMNormal',
|
||||
'RAMOpenset',
|
||||
], MODELS)
|
||||
|
|
|
@ -0,0 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from .ram import RAM, RAMNormal, RAMOpenset
|
||||
|
||||
__all__ = ['RAM', 'RAMNormal', 'RAMOpenset']
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
|
@ -0,0 +1,93 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# data settings
|
||||
test_transforms_cfg = [
|
||||
dict(type='Resize', scale=(384, 384), interpolation='bicubic'),
|
||||
dict(
|
||||
type='mmpretrain.PackInputs',
|
||||
algorithm_keys=['text'],
|
||||
meta_keys=['image_id', 'scale_factor'],
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def get_ram_cfg(mode='normal'):
|
||||
assert mode in ['normal', 'openset'], 'mode must "normal" or "openset"'
|
||||
model_type = 'RAMNormal' if mode == 'normal' else 'RAMOpenset'
|
||||
model_cfg = dict(
|
||||
type=model_type,
|
||||
tokenizer=dict(
|
||||
type='BertTokenizer',
|
||||
name_or_path='/public/DATA/qbw/ckpt/bert-base-uncased',
|
||||
use_fast=False),
|
||||
vision_backbone=dict(
|
||||
type='SwinTransformer',
|
||||
arch='large',
|
||||
img_size=384,
|
||||
window_size=12,
|
||||
),
|
||||
tag_encoder={
|
||||
'architectures': ['BertModel'],
|
||||
'attention_probs_dropout_prob': 0.1,
|
||||
'hidden_act': 'gelu',
|
||||
'hidden_dropout_prob': 0.1,
|
||||
'hidden_size': 768,
|
||||
'initializer_range': 0.02,
|
||||
'intermediate_size': 3072,
|
||||
'layer_norm_eps': 1e-12,
|
||||
'max_position_embeddings': 512,
|
||||
'model_type': 'bert',
|
||||
'num_attention_heads': 12,
|
||||
'num_hidden_layers': 12,
|
||||
'pad_token_id': 0,
|
||||
'type_vocab_size': 2,
|
||||
'vocab_size': 30524,
|
||||
'encoder_width': 512,
|
||||
'add_cross_attention': True
|
||||
},
|
||||
text_decoder={
|
||||
'architectures': ['BertModel'],
|
||||
'attention_probs_dropout_prob': 0.1,
|
||||
'hidden_act': 'gelu',
|
||||
'hidden_dropout_prob': 0.1,
|
||||
'hidden_size': 768,
|
||||
'initializer_range': 0.02,
|
||||
'intermediate_size': 3072,
|
||||
'layer_norm_eps': 1e-12,
|
||||
'max_position_embeddings': 512,
|
||||
'model_type': 'bert',
|
||||
'num_attention_heads': 12,
|
||||
'num_hidden_layers': 12,
|
||||
'pad_token_id': 0,
|
||||
'type_vocab_size': 2,
|
||||
'vocab_size': 30524,
|
||||
'encoder_width': 768,
|
||||
'add_cross_attention': True
|
||||
},
|
||||
tagging_head={
|
||||
'architectures': ['BertModel'],
|
||||
'attention_probs_dropout_prob': 0.1,
|
||||
'hidden_act': 'gelu',
|
||||
'hidden_dropout_prob': 0.1,
|
||||
'hidden_size': 768,
|
||||
'initializer_range': 0.02,
|
||||
'intermediate_size': 3072,
|
||||
'layer_norm_eps': 1e-12,
|
||||
'max_position_embeddings': 512,
|
||||
'model_type': 'bert',
|
||||
'num_attention_heads': 4,
|
||||
'num_hidden_layers': 2,
|
||||
'pad_token_id': 0,
|
||||
'type_vocab_size': 2,
|
||||
'vocab_size': 30522,
|
||||
'encoder_width': 512,
|
||||
'add_cross_attention': True,
|
||||
'add_tag_cross_attention': False
|
||||
},
|
||||
data_preprocessor=dict(
|
||||
type='MultiModalDataPreprocessor',
|
||||
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255],
|
||||
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255],
|
||||
to_rgb=False,
|
||||
),
|
||||
)
|
||||
return model_cfg
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,109 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
|
||||
import gradio as gr
|
||||
import torch
|
||||
|
||||
from mmpretrain.registry import MODELS, TRANSFORMS
|
||||
from .config.ram_swin_large_14m import get_ram_cfg, test_transforms_cfg
|
||||
from .run.inference import inference
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description='RAM(Recognize Anything Model) demo')
|
||||
parser.add_argument(
|
||||
'ram_ckpt', type=str, help='pretrained file for ram (absolute path)')
|
||||
parser.add_argument(
|
||||
'clip_ckpt',
|
||||
type=str,
|
||||
help='clip vit-base-p16 pretrained file (absolute path)')
|
||||
args = parser.parse_args()
|
||||
|
||||
if torch.cuda.is_available():
|
||||
devices = [
|
||||
torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())
|
||||
]
|
||||
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
||||
devices = [torch.device('mps')]
|
||||
else:
|
||||
devices = [torch.device('cpu')]
|
||||
|
||||
|
||||
def get_free_device():
|
||||
if hasattr(torch.cuda, 'mem_get_info'):
|
||||
free = [torch.cuda.mem_get_info(gpu)[0] for gpu in devices]
|
||||
select = max(zip(free, range(len(free))))[1]
|
||||
else:
|
||||
import random
|
||||
select = random.randint(0, len(devices) - 1)
|
||||
return devices[select]
|
||||
|
||||
|
||||
device = get_free_device()
|
||||
|
||||
|
||||
def ram_inference(image, tag_list, mode, threshold):
|
||||
test_transforms = TRANSFORMS.get('Compose')(transforms=test_transforms_cfg)
|
||||
model = MODELS.build(get_ram_cfg(mode=mode))
|
||||
model.load_state_dict(torch.load(args.ram_ckpt))
|
||||
model.device = device
|
||||
|
||||
if mode == 'openset':
|
||||
categories = tag_list
|
||||
if categories != '':
|
||||
categories = categories.strip().split()
|
||||
else:
|
||||
categories = None
|
||||
model.set_openset(
|
||||
categories=categories,
|
||||
clip_ckpt=args.clip_ckpt,
|
||||
threshold=threshold)
|
||||
|
||||
sample = dict(img=image)
|
||||
result = inference(sample, model, test_transforms, mode=mode)
|
||||
tag, tag_chinese, logits = \
|
||||
result.get('tag_output')[0][0], result.get('tag_output')[1][0],\
|
||||
result.get('logits_output')[0]
|
||||
|
||||
def wrap(tags, logits):
|
||||
if tags is None:
|
||||
return 'Openset mode has no tag_en'
|
||||
tag_lst = tags.split('|')
|
||||
rt_lst = []
|
||||
for i, tag in enumerate(tag_lst):
|
||||
tag = tag.strip()
|
||||
rt_lst.append(tag + f': {logits[i]:.2f}')
|
||||
return ' | '.join(rt_lst)
|
||||
|
||||
return [wrap(tag, logits), wrap(tag_chinese, logits)]
|
||||
|
||||
|
||||
def build_gradio():
|
||||
inputs = [
|
||||
gr.components.Image(label='image'),
|
||||
gr.components.Textbox(
|
||||
lines=2,
|
||||
label='tag_list',
|
||||
placeholder=
|
||||
'please input the categories split by keyboard "blank": ',
|
||||
value=''),
|
||||
gr.components.Radio(['normal', 'openset'],
|
||||
label='mode',
|
||||
value='normal'),
|
||||
gr.components.Slider(
|
||||
minimum=0, maximum=1, value=0.68, step=0.01, label='threshold')
|
||||
]
|
||||
return gr.Interface(
|
||||
fn=ram_inference,
|
||||
inputs=inputs,
|
||||
outputs=[
|
||||
gr.components.Textbox(),
|
||||
gr.components.Textbox(info="it's translated from the english tags")
|
||||
])
|
||||
|
||||
|
||||
def main():
|
||||
build_gradio().launch()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -0,0 +1,212 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import torch
|
||||
|
||||
from mmpretrain.registry import MODELS
|
||||
|
||||
|
||||
def article(name):
|
||||
return 'an' if name[0] in 'aeiou' else 'a'
|
||||
|
||||
|
||||
def processed_name(name, rm_dot=False):
|
||||
# _ for lvis
|
||||
# / for obj365
|
||||
res = name.replace('_', ' ').replace('/', ' or ').lower()
|
||||
if rm_dot:
|
||||
res = res.rstrip('.')
|
||||
return res
|
||||
|
||||
|
||||
single_template = ['a photo of a {}.']
|
||||
|
||||
multiple_templates = [
|
||||
'There is {article} {} in the scene.',
|
||||
'There is the {} in the scene.',
|
||||
'a photo of {article} {} in the scene.',
|
||||
'a photo of the {} in the scene.',
|
||||
'a photo of one {} in the scene.',
|
||||
'itap of {article} {}.',
|
||||
'itap of my {}.', # itap: I took a picture of
|
||||
'itap of the {}.',
|
||||
'a photo of {article} {}.',
|
||||
'a photo of my {}.',
|
||||
'a photo of the {}.',
|
||||
'a photo of one {}.',
|
||||
'a photo of many {}.',
|
||||
'a good photo of {article} {}.',
|
||||
'a good photo of the {}.',
|
||||
'a bad photo of {article} {}.',
|
||||
'a bad photo of the {}.',
|
||||
'a photo of a nice {}.',
|
||||
'a photo of the nice {}.',
|
||||
'a photo of a cool {}.',
|
||||
'a photo of the cool {}.',
|
||||
'a photo of a weird {}.',
|
||||
'a photo of the weird {}.',
|
||||
'a photo of a small {}.',
|
||||
'a photo of the small {}.',
|
||||
'a photo of a large {}.',
|
||||
'a photo of the large {}.',
|
||||
'a photo of a clean {}.',
|
||||
'a photo of the clean {}.',
|
||||
'a photo of a dirty {}.',
|
||||
'a photo of the dirty {}.',
|
||||
'a bright photo of {article} {}.',
|
||||
'a bright photo of the {}.',
|
||||
'a dark photo of {article} {}.',
|
||||
'a dark photo of the {}.',
|
||||
'a photo of a hard to see {}.',
|
||||
'a photo of the hard to see {}.',
|
||||
'a low resolution photo of {article} {}.',
|
||||
'a low resolution photo of the {}.',
|
||||
'a cropped photo of {article} {}.',
|
||||
'a cropped photo of the {}.',
|
||||
'a close-up photo of {article} {}.',
|
||||
'a close-up photo of the {}.',
|
||||
'a jpeg corrupted photo of {article} {}.',
|
||||
'a jpeg corrupted photo of the {}.',
|
||||
'a blurry photo of {article} {}.',
|
||||
'a blurry photo of the {}.',
|
||||
'a pixelated photo of {article} {}.',
|
||||
'a pixelated photo of the {}.',
|
||||
'a black and white photo of the {}.',
|
||||
'a black and white photo of {article} {}.',
|
||||
'a plastic {}.',
|
||||
'the plastic {}.',
|
||||
'a toy {}.',
|
||||
'the toy {}.',
|
||||
'a plushie {}.',
|
||||
'the plushie {}.',
|
||||
'a cartoon {}.',
|
||||
'the cartoon {}.',
|
||||
'an embroidered {}.',
|
||||
'the embroidered {}.',
|
||||
'a painting of the {}.',
|
||||
'a painting of a {}.',
|
||||
]
|
||||
|
||||
openimages_rare_unseen = [
|
||||
'Aerial photography', 'Aircraft engine', 'Ale', 'Aloe', 'Amphibian',
|
||||
'Angling', 'Anole', 'Antique car', 'Arcade game', 'Arthropod',
|
||||
'Assault rifle', 'Athletic shoe', 'Auto racing', 'Backlighting',
|
||||
'Bagpipes', 'Ball game', 'Barbecue chicken', 'Barechested', 'Barquentine',
|
||||
'Beef tenderloin', 'Billiard room', 'Billiards', 'Bird of prey',
|
||||
'Black swan', 'Black-and-white', 'Blond', 'Boating', 'Bonbon',
|
||||
'Bottled water', 'Bouldering', 'Bovine', 'Bratwurst', 'Breadboard',
|
||||
'Briefs', 'Brisket', 'Brochette', 'Calabaza', 'Camera operator', 'Canola',
|
||||
'Childbirth', 'Chordophone', 'Church bell', 'Classical sculpture',
|
||||
'Close-up', 'Cobblestone', 'Coca-cola', 'Combat sport', 'Comics',
|
||||
'Compact car', 'Computer speaker', 'Cookies and crackers',
|
||||
'Coral reef fish', 'Corn on the cob', 'Cosmetics', 'Crocodilia',
|
||||
'Digital camera', 'Dishware', 'Divemaster', 'Dobermann', 'Dog walking',
|
||||
'Domestic rabbit', 'Domestic short-haired cat', 'Double-decker bus',
|
||||
'Drums', 'Electric guitar', 'Electric piano', 'Electronic instrument',
|
||||
'Equestrianism', 'Equitation', 'Erinaceidae', 'Extreme sport', 'Falafel',
|
||||
'Figure skating', 'Filling station', 'Fire apparatus', 'Firearm',
|
||||
'Flatbread', 'Floristry', 'Forklift truck', 'Freight transport',
|
||||
'Fried food', 'Fried noodles', 'Frigate', 'Frozen yogurt', 'Frying',
|
||||
'Full moon', 'Galleon', 'Glacial landform', 'Gliding', 'Go-kart', 'Goats',
|
||||
'Grappling', 'Great white shark', 'Gumbo', 'Gun turret', 'Hair coloring',
|
||||
'Halter', 'Headphones', 'Heavy cruiser', 'Herding', 'High-speed rail',
|
||||
'Holding hands', 'Horse and buggy', 'Horse racing', 'Hound',
|
||||
'Hunting knife', 'Hurdling', 'Inflatable', 'Jackfruit', 'Jeans', 'Jiaozi',
|
||||
'Junk food', 'Khinkali', 'Kitesurfing', 'Lawn game', 'Leaf vegetable',
|
||||
'Lechon', 'Lifebuoy', 'Locust', 'Lumpia', 'Luxury vehicle', 'Machine tool',
|
||||
'Medical imaging', 'Melee weapon', 'Microcontroller', 'Middle ages',
|
||||
'Military person', 'Military vehicle', 'Milky way', 'Miniature Poodle',
|
||||
'Modern dance', 'Molluscs', 'Monoplane', 'Motorcycling', 'Musical theatre',
|
||||
'Narcissus', 'Nest box', 'Newsagent\'s shop', 'Nile crocodile',
|
||||
'Nordic skiing', 'Nuclear power plant', 'Orator', 'Outdoor shoe',
|
||||
'Parachuting', 'Pasta salad', 'Peafowl', 'Pelmeni', 'Perching bird',
|
||||
'Performance car', 'Personal water craft', 'Pit bull', 'Plant stem',
|
||||
'Pork chop', 'Portrait photography', 'Primate', 'Procyonidae',
|
||||
'Prosciutto', 'Public speaking', 'Racewalking', 'Ramen',
|
||||
'Rear-view mirror', 'Residential area', 'Ribs', 'Rice ball',
|
||||
'Road cycling', 'Roller skating', 'Roman temple', 'Rowing', 'Rural area',
|
||||
'Sailboat racing', 'Scaled reptile', 'Scuba diving', 'Senior citizen',
|
||||
'Shallot', 'Shinto shrine', 'Shooting range', 'Siberian husky', 'Sledding',
|
||||
'Soba', 'Solar energy', 'Sport climbing', 'Sport utility vehicle',
|
||||
'Steamed rice', 'Stemware', 'Sumo', 'Surfing Equipment', 'Team sport',
|
||||
'Touring car', 'Toy block', 'Trampolining', 'Underwater diving',
|
||||
'Vegetarian food', 'Wallaby', 'Water polo', 'Watercolor paint', 'Whiskers',
|
||||
'Wind wave', 'Woodwind instrument', 'Yakitori', 'Zeppelin'
|
||||
]
|
||||
|
||||
|
||||
def get_clip_model():
|
||||
model = dict(
|
||||
type='CLIPZeroShot',
|
||||
vision_backbone=dict(
|
||||
type='VisionTransformer',
|
||||
arch='base',
|
||||
img_size=224,
|
||||
patch_size=16,
|
||||
drop_rate=0.,
|
||||
layer_cfgs=dict(act_cfg=dict(type='mmpretrain.QuickGELU')),
|
||||
pre_norm=True,
|
||||
),
|
||||
projection=dict(
|
||||
type='CLIPProjection', in_channels=768, out_channels=512),
|
||||
text_backbone=dict(
|
||||
type='CLIPTransformer',
|
||||
width=512,
|
||||
layers=12,
|
||||
heads=8,
|
||||
attn_mask=True,
|
||||
),
|
||||
tokenizer=dict(
|
||||
type='AutoTokenizer',
|
||||
name_or_path='openai/clip-vit-base-patch16',
|
||||
use_fast=False),
|
||||
vocab_size=49408,
|
||||
transformer_width=512,
|
||||
proj_dim=512,
|
||||
context_length=77,
|
||||
data_preprocessor=dict(
|
||||
type='MultiModalDataPreprocessor',
|
||||
mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255],
|
||||
std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255],
|
||||
to_rgb=False,
|
||||
),
|
||||
)
|
||||
return MODELS.build(model)
|
||||
|
||||
|
||||
def build_openset_label_embedding(categories=None, clip_ckpt_path=''):
|
||||
if categories is None:
|
||||
print('Categories is None, so using rare_unseen categories')
|
||||
categories = openimages_rare_unseen
|
||||
model = get_clip_model()
|
||||
model.load_state_dict(torch.load(clip_ckpt_path))
|
||||
templates = multiple_templates
|
||||
|
||||
run_on_gpu = torch.cuda.is_available()
|
||||
|
||||
with torch.no_grad():
|
||||
openset_label_embedding = []
|
||||
for category in categories:
|
||||
texts = [
|
||||
template.format(
|
||||
processed_name(category, rm_dot=True),
|
||||
article=article(category)) for template in templates
|
||||
]
|
||||
texts = [
|
||||
'This is ' + text
|
||||
if text.startswith('a') or text.startswith('the') else text
|
||||
for text in texts
|
||||
]
|
||||
texts = model.tokenize(texts) # tokenize
|
||||
if run_on_gpu:
|
||||
texts = texts.cuda()
|
||||
model = model.cuda()
|
||||
text_embeddings = model.extract_text_feat(texts)
|
||||
text_embeddings /= text_embeddings.norm(dim=-1, keepdim=True)
|
||||
text_embedding = text_embeddings.mean(dim=0)
|
||||
text_embedding /= text_embedding.norm()
|
||||
openset_label_embedding.append(text_embedding)
|
||||
openset_label_embedding = torch.stack(openset_label_embedding, dim=1)
|
||||
if run_on_gpu:
|
||||
openset_label_embedding = openset_label_embedding.cuda()
|
||||
|
||||
openset_label_embedding = openset_label_embedding.t()
|
||||
return openset_label_embedding, categories
|
|
@ -0,0 +1,332 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import os
|
||||
import pickle
|
||||
from abc import abstractmethod
|
||||
from typing import List, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from mmengine.model import BaseModel
|
||||
|
||||
from mmpretrain.registry import MODELS, TOKENIZER
|
||||
from mmpretrain.structures import DataSample
|
||||
from .bert import BertConfig, BertLMHeadModel, BertModel
|
||||
from .openset_utils import build_openset_label_embedding
|
||||
from .utils import tie_encoder_decoder_weights
|
||||
|
||||
|
||||
def get_path(path):
|
||||
file_path = os.path.abspath(os.path.dirname(__file__))
|
||||
if not os.path.isabs(path):
|
||||
return os.path.join(file_path, path)
|
||||
|
||||
|
||||
class RAM(BaseModel):
|
||||
"""The implementation of `RAM <https://arxiv.org/abs/2306.03514>`_."""
|
||||
|
||||
def __init__(self,
|
||||
tokenizer: dict,
|
||||
vision_backbone: dict,
|
||||
tag_encoder: dict,
|
||||
tagging_head: dict,
|
||||
text_decoder: dict,
|
||||
device: str = 'cpu',
|
||||
vision_width: int = 1536,
|
||||
prompt='a picture of ',
|
||||
threshold=0.68,
|
||||
delete_tag_index=[],
|
||||
tag_list='./data/ram_tag_list.pickle',
|
||||
tag_list_chinese='./data/ram_tag_list_chinese.pickle',
|
||||
data_preprocessor: Optional[dict] = None,
|
||||
init_cfg: Optional[dict] = None):
|
||||
if data_preprocessor is None:
|
||||
data_preprocessor = {}
|
||||
data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
|
||||
data_preprocessor = MODELS.build(data_preprocessor)
|
||||
|
||||
super().__init__(
|
||||
data_preprocessor=data_preprocessor, init_cfg=init_cfg)
|
||||
|
||||
self.device = device
|
||||
# build the visual encoder
|
||||
self.visual_encoder = MODELS.build(vision_backbone)
|
||||
|
||||
# build the tokenizer
|
||||
self.tokenizer = TOKENIZER.build(tokenizer)
|
||||
self.tokenizer.add_special_tokens({'bos_token': '[DEC]'})
|
||||
self.tokenizer.add_special_tokens(
|
||||
{'additional_special_tokens': ['[ENC]']})
|
||||
self.tokenizer.enc_token_id = \
|
||||
self.tokenizer.additional_special_tokens_ids[0]
|
||||
|
||||
# build the tag encoder
|
||||
# encoder_config = BertConfig.from_json_file(med_config)
|
||||
# encoder_config.encoder_width = 512
|
||||
encoder_config = BertConfig.from_dict(tag_encoder)
|
||||
self.tag_encoder = BertModel(
|
||||
config=encoder_config, add_pooling_layer=False)
|
||||
|
||||
# build image-tag-text decoder
|
||||
# decoder_config = BertConfig.from_json_file(med_config)
|
||||
decoder_config = BertConfig.from_dict(text_decoder)
|
||||
self.text_decoder = BertLMHeadModel(config=decoder_config)
|
||||
|
||||
self.delete_tag_index = delete_tag_index
|
||||
self.prompt = prompt
|
||||
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1
|
||||
|
||||
# load tag list
|
||||
self.tag_list = self.load_tag_list(get_path(tag_list))
|
||||
self.tag_list_chinese = self.load_tag_list(get_path(tag_list_chinese))
|
||||
|
||||
# create image-tag recognition decoder
|
||||
self.threshold = threshold
|
||||
self.num_class = len(self.tag_list)
|
||||
# q2l_config = \
|
||||
# BertConfig.from_json_file(f'{CONFIG_PATH}/configs/q2l_config.json')
|
||||
# q2l_config.encoder_width = 512
|
||||
q2l_config = BertConfig.from_dict(tagging_head)
|
||||
self.tagging_head = BertModel(
|
||||
config=q2l_config, add_pooling_layer=False)
|
||||
self.tagging_head.resize_token_embeddings(len(self.tokenizer))
|
||||
self.label_embed = nn.Parameter(
|
||||
torch.zeros(self.num_class, q2l_config.encoder_width))
|
||||
|
||||
if q2l_config.hidden_size != 512:
|
||||
self.wordvec_proj = nn.Linear(512, q2l_config.hidden_size)
|
||||
else:
|
||||
self.wordvec_proj = nn.Identity()
|
||||
|
||||
self.fc = nn.Linear(q2l_config.hidden_size, 1)
|
||||
|
||||
self.del_selfattention()
|
||||
|
||||
# share weights of the lowest 2-layer of
|
||||
# "image-tag interaction encoder" with
|
||||
# the "image-tag recogntion decoder"
|
||||
tie_encoder_decoder_weights(self.tag_encoder, self.tagging_head, '',
|
||||
' ')
|
||||
self.image_proj = nn.Linear(vision_width, 512)
|
||||
# self.label_embed = nn.Parameter(torch.load(
|
||||
# f'{CONFIG_PATH}/data/textual_label_embedding.pth',
|
||||
# map_location='cpu').float())
|
||||
|
||||
# adjust thresholds for some tags
|
||||
self.class_threshold = torch.ones(self.num_class) * self.threshold
|
||||
ram_class_threshold_path = get_path(
|
||||
'./data/ram_tag_list_threshold.pickle')
|
||||
with open(ram_class_threshold_path, 'rb') as f:
|
||||
ram_class_threshold = pickle.load(f)
|
||||
for key, value in enumerate(ram_class_threshold):
|
||||
self.class_threshold[key] = value
|
||||
|
||||
def load_tag_list(self, tag_list_file):
|
||||
with open(tag_list_file, 'rb') as f:
|
||||
tag_list = pickle.load(f)
|
||||
tag_list = np.array(tag_list)
|
||||
return tag_list
|
||||
|
||||
# delete self-attention layer of image-tag recognition decoder
|
||||
# to reduce computation, follower Query2Label
|
||||
def del_selfattention(self):
|
||||
del self.tagging_head.embeddings
|
||||
for layer in self.tagging_head.encoder.layer:
|
||||
del layer.attention
|
||||
|
||||
def get_label_embed(self):
|
||||
return torch.nn.functional.relu(self.wordvec_proj(self.label_embed))
|
||||
|
||||
def extract_visual_feature(self, images):
|
||||
image_embeds = self.visual_encoder(images)[0]
|
||||
image_embeds = image_embeds.flatten(2, 3)
|
||||
attn_pool = nn.AdaptiveAvgPool1d(1)
|
||||
cls_token = attn_pool(image_embeds).permute(0, 2, 1).contiguous()
|
||||
image_embeds = image_embeds.permute(0, 2, 1).contiguous()
|
||||
image_embeds = torch.cat([cls_token, image_embeds], dim=1)
|
||||
image_embeds = self.image_proj(image_embeds)
|
||||
image_atts = torch.ones(
|
||||
image_embeds.size()[:-1], dtype=torch.long).to(images.device)
|
||||
return image_embeds, image_atts
|
||||
|
||||
def image2tag(self, label_embed, image_embeds, image_atts):
|
||||
# recognized image tags using image-tag recogntiion decoder
|
||||
# image_cls_embeds = image_embeds[:, 0, :]
|
||||
image_spatial_embeds = image_embeds[:, 1:, :]
|
||||
|
||||
bs = image_spatial_embeds.shape[0]
|
||||
label_embed = label_embed.unsqueeze(0).repeat(bs, 1, 1)
|
||||
tagging_embed = self.tagging_head(
|
||||
encoder_embeds=label_embed,
|
||||
encoder_hidden_states=image_embeds,
|
||||
encoder_attention_mask=image_atts,
|
||||
return_dict=False,
|
||||
mode='tagging',
|
||||
)
|
||||
|
||||
logits = self.fc(tagging_embed[0]).squeeze(-1)
|
||||
return logits
|
||||
|
||||
def forward(
|
||||
self,
|
||||
images: torch.Tensor,
|
||||
data_samples: Optional[list] = None,
|
||||
mode: str = 'predict',
|
||||
**kwargs,
|
||||
):
|
||||
if mode == 'predict':
|
||||
return self.predict(images, data_samples, **kwargs)
|
||||
else:
|
||||
raise RuntimeError(f'Invalid mode "{mode}".')
|
||||
|
||||
@abstractmethod
|
||||
def predict(self,
|
||||
images: torch.Tensor,
|
||||
data_samples: DataSample = None) -> DataSample:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@MODELS.register_module()
|
||||
class RAMNormal(RAM):
|
||||
|
||||
def __init__(self,
|
||||
tokenizer: dict,
|
||||
vision_backbone: dict,
|
||||
tag_encoder: dict,
|
||||
tagging_head: dict,
|
||||
text_decoder: dict,
|
||||
device: str = 'cpu',
|
||||
vision_width: int = 1536,
|
||||
prompt='a picture of ',
|
||||
threshold=0.68,
|
||||
delete_tag_index=[],
|
||||
tag_list='./data/ram_tag_list.pickle',
|
||||
tag_list_chinese='./data/ram_tag_list_chinese.pickle',
|
||||
data_preprocessor: Optional[dict] = None,
|
||||
init_cfg: Optional[dict] = None):
|
||||
super().__init__(
|
||||
tokenizer,
|
||||
vision_backbone,
|
||||
tag_encoder,
|
||||
tagging_head,
|
||||
text_decoder,
|
||||
device,
|
||||
vision_width,
|
||||
prompt,
|
||||
threshold,
|
||||
delete_tag_index,
|
||||
tag_list,
|
||||
tag_list_chinese,
|
||||
data_preprocessor,
|
||||
init_cfg,
|
||||
)
|
||||
|
||||
def tag_process(self, logits):
|
||||
targets = torch.where(
|
||||
torch.sigmoid(logits) > self.class_threshold.to(logits.device),
|
||||
torch.tensor(1.0).to(logits.device),
|
||||
torch.zeros(self.num_class).to(logits.device))
|
||||
|
||||
tag = targets.cpu().numpy()
|
||||
tag[:, self.delete_tag_index] = 0
|
||||
tag_output = []
|
||||
tag_output_chinese = []
|
||||
logits_output = []
|
||||
|
||||
bs = logits.shape[0]
|
||||
for b in range(bs):
|
||||
index = np.argwhere(tag[b] == 1)
|
||||
token = self.tag_list[index].squeeze(axis=1)
|
||||
logits_output.append(
|
||||
torch.sigmoid(logits)[b][index[:, 0]].cpu().numpy())
|
||||
tag_output.append(' | '.join(token))
|
||||
token_chinese = self.tag_list_chinese[index].squeeze(axis=1)
|
||||
tag_output_chinese.append(' | '.join(token_chinese))
|
||||
|
||||
return [(tag_output, tag_output_chinese), logits_output]
|
||||
|
||||
def predict(self,
|
||||
images: torch.Tensor,
|
||||
data_samples: DataSample = None) -> DataSample:
|
||||
self.eval()
|
||||
self.to(self.device)
|
||||
images = images.to(self.device)
|
||||
label_embed = self.get_label_embed()
|
||||
image_embeds, image_atts = self.extract_visual_feature(images)
|
||||
logits = self.image2tag(label_embed, image_embeds, image_atts)
|
||||
tag_output, logits_output = self.tag_process(logits)
|
||||
data_samples.set_field(logits_output, 'logits_output')
|
||||
data_samples.set_field(tag_output, 'tag_output')
|
||||
return data_samples
|
||||
|
||||
|
||||
@MODELS.register_module()
|
||||
class RAMOpenset(RAMNormal):
|
||||
|
||||
def __init__(self,
|
||||
tokenizer: dict,
|
||||
vision_backbone: dict,
|
||||
tag_encoder: dict,
|
||||
tagging_head: dict,
|
||||
text_decoder: dict,
|
||||
device: str = 'cpu',
|
||||
vision_width: int = 1536,
|
||||
prompt='a picture of ',
|
||||
threshold=0.68,
|
||||
delete_tag_index=[],
|
||||
tag_list='./data/ram_tag_list.pickle',
|
||||
tag_list_chinese='./data/ram_tag_list_chinese.pickle',
|
||||
data_preprocessor: Optional[dict] = None,
|
||||
init_cfg: Optional[dict] = None):
|
||||
super().__init__(
|
||||
tokenizer,
|
||||
vision_backbone,
|
||||
tag_encoder,
|
||||
tagging_head,
|
||||
text_decoder,
|
||||
device,
|
||||
vision_width,
|
||||
prompt,
|
||||
threshold,
|
||||
delete_tag_index,
|
||||
tag_list,
|
||||
tag_list_chinese,
|
||||
data_preprocessor,
|
||||
init_cfg,
|
||||
)
|
||||
|
||||
def set_openset(self,
|
||||
categories: List[str] = None,
|
||||
clip_ckpt: str = '',
|
||||
threshold: float = 0.68):
|
||||
openset_label_embedding, openset_categories = \
|
||||
build_openset_label_embedding(
|
||||
categories, clip_ckpt
|
||||
)
|
||||
self.tag_list = np.array(openset_categories)
|
||||
self.label_embed = nn.Parameter(openset_label_embedding.float())
|
||||
self.num_class = len(openset_categories)
|
||||
|
||||
# the threshold for unseen categories is often lower
|
||||
self.class_threshold = torch.ones(self.num_class) * threshold
|
||||
|
||||
def tag_process(self, logits):
|
||||
targets = torch.where(
|
||||
torch.sigmoid(logits) > self.class_threshold.to(logits.device),
|
||||
torch.tensor(1.0).to(logits.device),
|
||||
torch.zeros(self.num_class).to(logits.device))
|
||||
|
||||
tag = targets.cpu().numpy()
|
||||
tag[:, self.delete_tag_index] = 0
|
||||
|
||||
bs = logits.shape[0]
|
||||
tag_output = []
|
||||
logits_output = []
|
||||
for b in range(bs):
|
||||
index = np.argwhere(tag[b] == 1)
|
||||
token = self.tag_list[index].squeeze(axis=1)
|
||||
logits_output.append(
|
||||
torch.sigmoid(logits)[b][index[:, 0]].cpu().numpy())
|
||||
tag_output.append(' | '.join(token))
|
||||
|
||||
return [(tag_output, [None]), logits_output]
|
|
@ -0,0 +1 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
|
@ -0,0 +1,29 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import torch
|
||||
|
||||
|
||||
def inference_ram(sample, model):
|
||||
|
||||
with torch.no_grad():
|
||||
result = model.test_step(sample)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def inference_ram_openset(sample, model):
|
||||
with torch.no_grad():
|
||||
result = model.test_step(sample)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def inference(sample, model, transforms, mode='normal'):
|
||||
sample = transforms(sample)
|
||||
if sample['inputs'].ndim == 3:
|
||||
sample['inputs'] = sample['inputs'].unsqueeze(dim=0)
|
||||
assert mode in ['normal', 'openset'
|
||||
], 'mode of inference must be "normal" or "openset"'
|
||||
if mode == 'normal':
|
||||
return inference_ram(sample, model)
|
||||
else:
|
||||
return inference_ram_openset(sample, model)
|
|
@ -0,0 +1,87 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from typing import List
|
||||
|
||||
from torch import nn
|
||||
|
||||
|
||||
def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module,
|
||||
base_model_prefix: str, skip_key: str):
|
||||
uninitialized_encoder_weights: List[str] = []
|
||||
if decoder.__class__ != encoder.__class__:
|
||||
print(f'''{decoder.__class__} and {encoder.__class__} are not equal.
|
||||
In this case make sure that
|
||||
all encoder weights are correctly initialized.''')
|
||||
|
||||
def tie_encoder_to_decoder_recursively(
|
||||
decoder_pointer: nn.Module,
|
||||
encoder_pointer: nn.Module,
|
||||
module_name: str,
|
||||
uninitialized_encoder_weights: List[str],
|
||||
skip_key: str,
|
||||
depth=0,
|
||||
):
|
||||
assert isinstance(decoder_pointer, nn.Module) and isinstance(
|
||||
encoder_pointer, nn.Module
|
||||
), f'{decoder_pointer} and {encoder_pointer}' + \
|
||||
'have to be of type torch.nn.Module'
|
||||
if hasattr(decoder_pointer, 'weight') and skip_key not in module_name:
|
||||
assert hasattr(encoder_pointer, 'weight')
|
||||
encoder_pointer.weight = decoder_pointer.weight
|
||||
if hasattr(decoder_pointer, 'bias'):
|
||||
assert hasattr(encoder_pointer, 'bias')
|
||||
encoder_pointer.bias = decoder_pointer.bias
|
||||
print(module_name + ' is tied')
|
||||
return
|
||||
|
||||
encoder_modules = encoder_pointer._modules
|
||||
decoder_modules = decoder_pointer._modules
|
||||
if len(decoder_modules) > 0:
|
||||
assert (len(encoder_modules) >
|
||||
0), f'''Encoder module {encoder_pointer}
|
||||
does not match decoder module {decoder_pointer}'''
|
||||
|
||||
all_encoder_weights = set([
|
||||
module_name + '/' + sub_name
|
||||
for sub_name in encoder_modules.keys()
|
||||
])
|
||||
encoder_layer_pos = 0
|
||||
for name, module in decoder_modules.items():
|
||||
if name.isdigit():
|
||||
encoder_name = str(int(name) + encoder_layer_pos)
|
||||
decoder_name = name
|
||||
if not isinstance(
|
||||
decoder_modules[decoder_name],
|
||||
type(encoder_modules[encoder_name])) and len(
|
||||
encoder_modules) != len(decoder_modules):
|
||||
# this can happen if the name corresponds to
|
||||
# the position in a list module list of layers
|
||||
# in this case the decoder has added a
|
||||
# cross-attention that the encoder doesn't have
|
||||
# thus skip this step and
|
||||
# subtract one layer pos from encoder
|
||||
encoder_layer_pos -= 1
|
||||
continue
|
||||
elif name not in encoder_modules:
|
||||
continue
|
||||
elif depth > 500:
|
||||
raise ValueError(
|
||||
'''Max depth of recursive function `tie_encoder_to_decoder` reached.
|
||||
It seems that there is a circular dependency
|
||||
between two or more `nn.Modules` of your model.''')
|
||||
else:
|
||||
decoder_name = encoder_name = name
|
||||
tie_encoder_to_decoder_recursively(
|
||||
decoder_modules[decoder_name],
|
||||
encoder_modules[encoder_name],
|
||||
module_name + '/' + name,
|
||||
uninitialized_encoder_weights,
|
||||
skip_key,
|
||||
depth=depth + 1,
|
||||
)
|
||||
all_encoder_weights.remove(module_name + '/' + encoder_name)
|
||||
|
||||
uninitialized_encoder_weights += list(all_encoder_weights)
|
||||
|
||||
# tie weights recursively
|
||||
tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix,
|
||||
uninitialized_encoder_weights, skip_key)
|
|
@ -12,6 +12,7 @@ from .huggingface import register_hf_tokenizer
|
|||
|
||||
register_hf_tokenizer(AutoTokenizer)
|
||||
register_hf_tokenizer(LlamaTokenizer)
|
||||
register_hf_tokenizer(BertTokenizer)
|
||||
|
||||
|
||||
@register_hf_tokenizer()
|
||||
|
|
|
@ -0,0 +1,117 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import os.path as osp
|
||||
from collections import OrderedDict
|
||||
from copy import deepcopy
|
||||
|
||||
import mmengine
|
||||
import torch
|
||||
from mmengine.runner import CheckpointLoader
|
||||
|
||||
|
||||
def convert_swin(ckpt):
|
||||
new_ckpt = OrderedDict()
|
||||
convert_mapping = dict()
|
||||
|
||||
def correct_unfold_reduction_order(x):
|
||||
out_channel, in_channel = x.shape
|
||||
x = x.reshape(out_channel, 4, in_channel // 4)
|
||||
x = x[:, [0, 2, 1, 3], :].transpose(1,
|
||||
2).reshape(out_channel, in_channel)
|
||||
return x
|
||||
|
||||
def correct_unfold_norm_order(x):
|
||||
in_channel = x.shape[0]
|
||||
x = x.reshape(4, in_channel // 4)
|
||||
x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel)
|
||||
return x
|
||||
|
||||
for k, v in ckpt.items():
|
||||
if 'attn_mask' in k:
|
||||
continue
|
||||
if k.startswith('head'):
|
||||
continue
|
||||
elif k.startswith('layers'):
|
||||
new_v = v
|
||||
if 'attn.' in k:
|
||||
new_k = k.replace('attn.', 'attn.w_msa.')
|
||||
elif 'mlp.' in k:
|
||||
if 'mlp.fc1.' in k:
|
||||
new_k = k.replace('mlp.fc1.', 'ffn.layers.0.0.')
|
||||
elif 'mlp.fc2.' in k:
|
||||
new_k = k.replace('mlp.fc2.', 'ffn.layers.1.')
|
||||
else:
|
||||
new_k = k.replace('mlp.', 'ffn.')
|
||||
elif 'downsample' in k:
|
||||
new_k = k
|
||||
if 'reduction.' in k:
|
||||
new_v = correct_unfold_reduction_order(v)
|
||||
elif 'norm.' in k:
|
||||
new_v = correct_unfold_norm_order(v)
|
||||
else:
|
||||
new_k = k
|
||||
new_k = new_k.replace('layers', 'stages', 1)
|
||||
elif k.startswith('patch_embed'):
|
||||
new_v = v
|
||||
if 'proj' in k:
|
||||
new_k = k.replace('proj', 'projection')
|
||||
else:
|
||||
new_k = k
|
||||
elif k.startswith('norm'):
|
||||
new_v = v
|
||||
new_k = k.replace('norm', 'norm3')
|
||||
else:
|
||||
new_v = v
|
||||
new_k = k
|
||||
|
||||
new_ckpt[new_k] = new_v
|
||||
convert_mapping[k] = new_k
|
||||
|
||||
return new_ckpt, convert_mapping
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Convert keys in official pretrained RAM models to'
|
||||
'MMPretrain style.')
|
||||
parser.add_argument('src', help='src model path or url')
|
||||
# The dst path must be a full path of the new checkpoint.
|
||||
parser.add_argument('dst', help='save path')
|
||||
args = parser.parse_args()
|
||||
|
||||
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
|
||||
if 'state_dict' in checkpoint:
|
||||
state_dict = checkpoint['state_dict']
|
||||
elif 'model' in checkpoint:
|
||||
state_dict = checkpoint['model']
|
||||
else:
|
||||
state_dict = checkpoint
|
||||
|
||||
visual_ckpt = OrderedDict()
|
||||
for key in state_dict:
|
||||
if key.startswith('visual_encoder.'):
|
||||
new_key = key.replace('visual_encoder.', '')
|
||||
visual_ckpt[new_key] = state_dict[key]
|
||||
|
||||
new_visual_ckpt, convert_mapping = convert_swin(visual_ckpt)
|
||||
new_ckpt = deepcopy(state_dict)
|
||||
for key in state_dict:
|
||||
if key.startswith('visual_encoder.'):
|
||||
if 'attn_mask' in key:
|
||||
del new_ckpt[key]
|
||||
continue
|
||||
del new_ckpt[key]
|
||||
old_key = key.replace('visual_encoder.', '')
|
||||
new_ckpt[key.replace(old_key,
|
||||
convert_mapping[old_key])] = deepcopy(
|
||||
new_visual_ckpt[key.replace(
|
||||
old_key,
|
||||
convert_mapping[old_key]).replace(
|
||||
'visual_encoder.', '')])
|
||||
|
||||
mmengine.mkdir_or_exist(osp.dirname(args.dst))
|
||||
torch.save(new_ckpt, args.dst)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue