[Fix]Fix metafile ()

* add mytrain.py for test

* test before layers

* test attr in layers

* test classifier

* delete mytrain.py

* add mobilenet_v3.yml

* fix ymal

* rename model_zoo.yml to model-index.yml

* replace imagenet with imagenet-1k
pull/338/head
whcao 2021-07-01 20:50:42 +08:00 committed by GitHub
parent 076ee10cac
commit 5a86288f1f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 490 additions and 448 deletions
configs
mobilenet_v2
mobilenet_v3
seresnet
shufflenet_v1
shufflenet_v2

View File

@ -1,30 +1,30 @@
Collections:
- Name: FP16
Metadata:
Training Data: ImageNet
Training Resources: 8x V100 GPUs
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
- Mixed Precision Training
Training Resources: 8x V100 GPUs
Paper: https://arxiv.org/abs/1710.03740
README: configs/fp16/README.md
Models:
- Config: configs/fp16/resnet50_b32x8_fp16_dynamic_imagenet.py
In Collection: FP16
Metadata:
FLOPs: 4120000000
Parameters: 25560000
Epochs: 100
Batch Size: 256
Architecture:
- ResNet
Name: resnet50_b32x8_fp16_dynamic_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 76.32
Top 5 Accuracy: 93.04
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/fp16/resnet50_batch256_fp16_imagenet_20210320-b3964210.pth
- Name: resnet50_b32x8_fp16_dynamic_imagenet
Metadata:
FLOPs: 4120000000
Parameters: 25560000
Epochs: 100
Batch Size: 256
Architecture:
- ResNet
In Collection: FP16
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 76.32
Top 5 Accuracy: 93.04
Weights: https://download.openmmlab.com/mmclassification/v0/fp16/resnet50_batch256_fp16_imagenet_20210320-b3964210.pth
Config: configs/fp16/resnet50_b32x8_fp16_dynamic_imagenet.py

View File

@ -1,7 +1,7 @@
Collections:
- Name: MobileNet V2
Metadata:
Training Data: ImageNet
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
@ -14,16 +14,16 @@ Collections:
README: configs/mobilenet_v2/README.md
Models:
- Config: configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py
In Collection: MobileNet V2
Metadata:
FLOPs: 319000000
Parameters: 3500000
Name: mobilenet_v2_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 71.86
Top 5 Accuracy: 90.42
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth
- Name: mobilenet_v2_b32x8_imagenet
Metadata:
FLOPs: 319000000
Parameters: 3500000
In Collection: MobileNet V2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 71.86
Top 5 Accuracy: 90.42
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth
Config: configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py

View File

@ -0,0 +1,42 @@
Collections:
- Name: MobileNet V3
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- RMSprop with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Epochs: 600
Batch Size: 1024
Architecture:
- MobileNet V3
Paper: https://arxiv.org/abs/1905.02244
README: configs/mobilenet_v3/README.md
Models:
- Name: mobilenet_v3_small_imagenet
Metadata:
FLOPs: 60000000
Parameters: 2540000
In Collection: MobileNet V3
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 67.66
Top 5 Accuracy: 87.41
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/mobilenet_v3_small-8427ecf0.pth
Config: configs/mobilenet_v3/mobilenet_v3_small_imagenet.py
- Name: mobilenet_v3_large_imagenet
Metadata:
FLOPs: 230000000
Parameters: 5480000
In Collection: MobileNet V3
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 74.04
Top 5 Accuracy: 91.34
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/mobilenet_v3_large-3ea3c186.pth
Config: configs/mobilenet_v3/mobilenet_v3_large_imagenet.py

View File

@ -1,7 +1,7 @@
Collections:
- Name: ResNet
Metadata:
Training Data: ImageNet
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
@ -14,204 +14,204 @@ Collections:
README: configs/resnet/README.md
Models:
- Config: configs/resnet/resnet18_b16x8_cifar10.py
In Collection: ResNet
Metadata:
FLOPs: 560000000
Parameters: 11170000
Training Data: CIFAR-10
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
Name: resnet18_b16x8_cifar10
Results:
- Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 94.72
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20200823-f906fa4e.pth
- Config: configs/resnet/resnet34_b16x8_cifar10.py
In Collection: ResNet
Metadata:
FLOPs: 1160000000
Parameters: 21280000
Training Data: CIFAR-10
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
Name: resnet34_b16x8_cifar10
Results:
- Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 95.34
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_b16x8_cifar10_20200823-52d5d832.pth
- Config: configs/resnet/resnet50_b16x8_cifar10.py
In Collection: ResNet
Metadata:
FLOPs: 1310000000
Parameters: 23520000
Training Data: CIFAR-10
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
Name: resnet50_b16x8_cifar10
Results:
- Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 95.36
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20200823-882aa7b1.pth
- Config: configs/resnet/resnet101_b16x8_cifar10.py
In Collection: ResNet
Metadata:
FLOPs: 2520000000
Parameters: 42510000
Training Data: CIFAR-10
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
Name: resnet101_b16x8_cifar10
Results:
- Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 95.66
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_b16x8_cifar10_20200823-d9501bbc.pth
- Config: configs/resnet/resnet152_b16x8_cifar10.py
In Collection: ResNet
Metadata:
FLOPs: 3740000000
Parameters: 58160000
Training Data: CIFAR-10
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
Name: resnet152_b16x8_cifar10
Results:
- Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 95.96
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_b16x8_cifar10_20200823-ad4d5d0c.pth
- Config: configs/resnet/resnet50_b16x8_cifar100.py
In Collection: ResNet
Metadata:
FLOPs: 1310000000
Parameters: 23710000
Training Data: CIFAR-100
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
Name: resnet50_b16x8_cifar100
Results:
- Dataset: CIFAR-100
Metrics:
Top 1 Accuracy: 80.51
Top 5 Accuracy: 95.27
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_cifar100_20210410-37f13c16.pth
- Config: configs/resnet/resnet18_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 1820000000
Parameters: 11690000
Name: resnet18_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 70.07
Top 5 Accuracy: 89.44
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_batch256_imagenet_20200708-34ab8f90.pth
- Config: configs/resnet/resnet34_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 3680000000
Parameters: 2180000
Name: resnet34_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 73.85
Top 5 Accuracy: 91.53
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_batch256_imagenet_20200708-32ffb4f7.pth
- Config: configs/resnet/resnet50_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 4120000000
Parameters: 25560000
Name: resnet50_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 76.55
Top 5 Accuracy: 93.15
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_imagenet_20200708-cfb998bf.pth
- Config: configs/resnet/resnet101_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 7850000000
Parameters: 44550000
Name: resnet101_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.18
Top 5 Accuracy: 94.03
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_batch256_imagenet_20200708-753f3608.pth
- Config: configs/resnet/resnet152_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 11580000000
Parameters: 60190000
Name: resnet152_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.63
Top 5 Accuracy: 94.16
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_batch256_imagenet_20200708-ec25b1f9.pth
- Config: configs/resnet/resnetv1d50_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 4360000000
Parameters: 25580000
Name: resnetv1d50_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 77.4
Top 5 Accuracy: 93.66
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_batch256_imagenet_20200708-1ad0ce94.pth
- Config: configs/resnet/resnetv1d101_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 8090000000
Parameters: 44570000
Name: resnetv1d101_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.85
Top 5 Accuracy: 94.38
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_batch256_imagenet_20200708-9cb302ef.pth
- Config: configs/resnet/resnetv1d152_b32x8_imagenet.py
In Collection: ResNet
Metadata:
FLOPs: 11820000000
Parameters: 60210000
Name: resnetv1d152_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.35
Top 5 Accuracy: 94.61
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_batch256_imagenet_20200708-e79cb6a2.pth
- Name: resnet18_b16x8_cifar10
Metadata:
FLOPs: 560000000
Parameters: 11170000
Training Data: CIFAR-10
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
In Collection: ResNet
Results:
- Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 94.72
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20200823-f906fa4e.pth
Config: configs/resnet/resnet18_b16x8_cifar10.py
- Name: resnet34_b16x8_cifar10
Metadata:
FLOPs: 1160000000
Parameters: 21280000
Training Data: CIFAR-10
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
In Collection: ResNet
Results:
- Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 95.34
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_b16x8_cifar10_20200823-52d5d832.pth
Config: configs/resnet/resnet34_b16x8_cifar10.py
- Name: resnet50_b16x8_cifar10
Metadata:
FLOPs: 1310000000
Parameters: 23520000
Training Data: CIFAR-10
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
In Collection: ResNet
Results:
- Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 95.36
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20200823-882aa7b1.pth
Config: configs/resnet/resnet50_b16x8_cifar10.py
- Name: resnet101_b16x8_cifar10
Metadata:
FLOPs: 2520000000
Parameters: 42510000
Training Data: CIFAR-10
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
In Collection: ResNet
Results:
- Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 95.66
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_b16x8_cifar10_20200823-d9501bbc.pth
Config: configs/resnet/resnet101_b16x8_cifar10.py
- Name: resnet152_b16x8_cifar10
Metadata:
FLOPs: 3740000000
Parameters: 58160000
Training Data: CIFAR-10
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
In Collection: ResNet
Results:
- Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 95.96
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_b16x8_cifar10_20200823-ad4d5d0c.pth
Config: configs/resnet/resnet152_b16x8_cifar10.py
- Name: resnet50_b16x8_cifar100
Metadata:
FLOPs: 1310000000
Parameters: 23710000
Training Data: CIFAR-100
Training Resources: 8x 1080 GPUs
Epochs: 200
Batch Size: 128
In Collection: ResNet
Results:
- Dataset: CIFAR-100
Metrics:
Top 1 Accuracy: 80.51
Top 5 Accuracy: 95.27
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_cifar100_20210410-37f13c16.pth
Config: configs/resnet/resnet50_b16x8_cifar100.py
- Name: resnet18_b32x8_imagenet
Metadata:
FLOPs: 1820000000
Parameters: 11690000
In Collection: ResNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 70.07
Top 5 Accuracy: 89.44
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_batch256_imagenet_20200708-34ab8f90.pth
Config: configs/resnet/resnet18_b32x8_imagenet.py
- Name: resnet34_b32x8_imagenet
Metadata:
FLOPs: 3680000000
Parameters: 2180000
In Collection: ResNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 73.85
Top 5 Accuracy: 91.53
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_batch256_imagenet_20200708-32ffb4f7.pth
Config: configs/resnet/resnet34_b32x8_imagenet.py
- Name: resnet50_b32x8_imagenet
Metadata:
FLOPs: 4120000000
Parameters: 25560000
In Collection: ResNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 76.55
Top 5 Accuracy: 93.15
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_imagenet_20200708-cfb998bf.pth
Config: configs/resnet/resnet50_b32x8_imagenet.py
- Name: resnet101_b32x8_imagenet
Metadata:
FLOPs: 7850000000
Parameters: 44550000
In Collection: ResNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.18
Top 5 Accuracy: 94.03
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_batch256_imagenet_20200708-753f3608.pth
Config: configs/resnet/resnet101_b32x8_imagenet.py
- Name: resnet152_b32x8_imagenet
Metadata:
FLOPs: 11580000000
Parameters: 60190000
In Collection: ResNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.63
Top 5 Accuracy: 94.16
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_batch256_imagenet_20200708-ec25b1f9.pth
Config: configs/resnet/resnet152_b32x8_imagenet.py
- Name: resnetv1d50_b32x8_imagenet
Metadata:
FLOPs: 4360000000
Parameters: 25580000
In Collection: ResNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 77.4
Top 5 Accuracy: 93.66
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_batch256_imagenet_20200708-1ad0ce94.pth
Config: configs/resnet/resnetv1d50_b32x8_imagenet.py
- Name: resnetv1d101_b32x8_imagenet
Metadata:
FLOPs: 8090000000
Parameters: 44570000
In Collection: ResNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.85
Top 5 Accuracy: 94.38
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_batch256_imagenet_20200708-9cb302ef.pth
Config: configs/resnet/resnetv1d101_b32x8_imagenet.py
- Name: resnetv1d152_b32x8_imagenet
Metadata:
FLOPs: 11820000000
Parameters: 60210000
In Collection: ResNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 79.35
Top 5 Accuracy: 94.61
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_batch256_imagenet_20200708-e79cb6a2.pth
Config: configs/resnet/resnetv1d152_b32x8_imagenet.py

View File

@ -1,7 +1,7 @@
Collections:
- Name: ResNeXt
Metadata:
Training Data: ImageNet
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
@ -14,55 +14,55 @@ Collections:
README: configs/resnext/README.md
Models:
- Config: configs/resnext/resnext50_32x4d_b32x8_imagenet.py
In Collection: ResNeXt
Metadata:
FLOPs: 4270000000
Parameters: 25030000
Name: resnext50_32x4d_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 77.92
Top 5 Accuracy: 93.74
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_batch256_imagenet_20200708-c07adbb7.pth
- Config: configs/resnext/resnext101_32x4d_b32x8_imagenet.py
In Collection: ResNeXt
Metadata:
FLOPs: 8030000000
Parameters: 44180000
Name: resnext101_32x4d_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.7
Top 5 Accuracy: 94.34
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_batch256_imagenet_20200708-87f2d1c9.pth
- Config: configs/resnext/resnext101_32x8d_b32x8_imagenet.py
In Collection: ResNeXt
Metadata:
FLOPs: 16500000000
Parameters: 88790000
Name: resnext101_32x8d_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.22
Top 5 Accuracy: 94.52
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_batch256_imagenet_20200708-1ec34aa7.pth
- Config: configs/resnext/resnext152_32x4d_b32x8_imagenet.py
In Collection: ResNeXt
Metadata:
FLOPs: 11800000000
Parameters: 59950000
Name: resnext152_32x4d_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.06
Top 5 Accuracy: 94.47
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_batch256_imagenet_20200708-aab5034c.pth
- Name: resnext50_32x4d_b32x8_imagenet
Metadata:
FLOPs: 4270000000
Parameters: 25030000
In Collection: ResNeXt
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 77.92
Top 5 Accuracy: 93.74
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_batch256_imagenet_20200708-c07adbb7.pth
Config: configs/resnext/resnext50_32x4d_b32x8_imagenet.py
- Name: resnext101_32x4d_b32x8_imagenet
Metadata:
FLOPs: 8030000000
Parameters: 44180000
In Collection: ResNeXt
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.7
Top 5 Accuracy: 94.34
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_batch256_imagenet_20200708-87f2d1c9.pth
Config: configs/resnext/resnext101_32x4d_b32x8_imagenet.py
- Name: resnext101_32x8d_b32x8_imagenet
Metadata:
FLOPs: 16500000000
Parameters: 88790000
In Collection: ResNeXt
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 79.22
Top 5 Accuracy: 94.52
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_batch256_imagenet_20200708-1ec34aa7.pth
Config: configs/resnext/resnext101_32x8d_b32x8_imagenet.py
- Name: resnext152_32x4d_b32x8_imagenet
Metadata:
FLOPs: 11800000000
Parameters: 59950000
In Collection: ResNeXt
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 79.06
Top 5 Accuracy: 94.47
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_batch256_imagenet_20200708-aab5034c.pth
Config: configs/resnext/resnext152_32x4d_b32x8_imagenet.py

View File

@ -1,7 +1,7 @@
Collections:
- Name: SEResNet
Metadata:
Training Data: ImageNet
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
@ -14,29 +14,29 @@ Collections:
README: configs/seresnet/README.md
Models:
- Config: configs/seresnet50/seresnet50_b32x8_imagenet.py
In Collection: SEResNet
Metadata:
FLOPs: 4130000000
Parameters: 28090000
Name: seresnet50_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 77.74
Top 5 Accuracy: 93.84
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200804-ae206104.pth
- Config: configs/seresnet101/seresnet101_b32x8_imagenet.py
In Collection: SEResNet
Metadata:
FLOPs: 7860000000
Parameters: 49330000
Name: seresnet101_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.26
Top 5 Accuracy: 94.07
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200804-ba5b51d4.pth
- Name: seresnet50_b32x8_imagenet
Metadata:
FLOPs: 4130000000
Parameters: 28090000
In Collection: SEResNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 77.74
Top 5 Accuracy: 93.84
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200804-ae206104.pth
Config: configs/seresnet50/seresnet50_b32x8_imagenet.py
- Name: seresnet101_b32x8_imagenet
Metadata:
FLOPs: 7860000000
Parameters: 49330000
In Collection: SEResNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.26
Top 5 Accuracy: 94.07
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200804-ba5b51d4.pth
Config: configs/seresnet101/seresnet101_b32x8_imagenet.py

View File

@ -1,7 +1,7 @@
Collections:
- Name: Shufflenet V1
Metadata:
Training Data: ImageNet
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
@ -15,16 +15,16 @@ Collections:
README: configs/shufflenet_v1/README.md
Models:
- Config: configs/shufflenet_v1/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py
In Collection: Shufflenet V1
Metadata:
FLOPs: 146000000
Parameters: 1870000
Name: shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 68.13
Top 5 Accuracy: 87.81
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.pth
- Name: shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet
Metadata:
FLOPs: 146000000
Parameters: 1870000
In Collection: Shufflenet V1
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 68.13
Top 5 Accuracy: 87.81
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.pth
Config: configs/shufflenet_v1/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py

View File

@ -1,7 +1,7 @@
Collections:
- Name: Shufflenet V2
Metadata:
Training Data: ImageNet
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
@ -15,16 +15,16 @@ Collections:
README: configs/shufflenet_v2/README.md
Models:
- Config: configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py
In Collection: Shufflenet V2
Metadata:
FLOPs: 149000000
Parameters: 2280000
Name: shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 69.55
Top 5 Accuracy: 88.92
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/shufflenet_v2/shufflenet_v2_batch1024_imagenet_20200812-5bf4721e.pth
- Name: shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet
Metadata:
FLOPs: 149000000
Parameters: 2280000
In Collection: Shufflenet V2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 69.55
Top 5 Accuracy: 88.92
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/shufflenet_v2/shufflenet_v2_batch1024_imagenet_20200812-5bf4721e.pth
Config: configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py

View File

@ -1,7 +1,7 @@
Collections:
- Name: VGG
Metadata:
Training Data: ImageNet
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
@ -14,107 +14,107 @@ Collections:
README: configs/vgg/README.md
Models:
- Config: configs/vgg/vgg11_b32x8_imagenet.py
In Collection: VGG
Metadata:
FLOPs: 7630000000
Parameters: 132860000
Name: vgg11_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 68.75
Top 5 Accuracy: 88.87
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_batch256_imagenet_20210208-4271cd6c.pth
- Config: configs/vgg/vgg13_b32x8_imagenet.py
In Collection: VGG
Metadata:
FLOPs: 11340000000
Parameters: 133050000
Name: vgg13_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 70.02
Top 5 Accuracy: 89.46
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_batch256_imagenet_20210208-4d1d6080.pth
- Config: configs/vgg/vgg16_b32x8_imagenet.py
In Collection: VGG
Metadata:
FLOPs: 15500000000
Parameters: 138360000
Name: vgg16_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 71.62
Top 5 Accuracy: 90.49
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.pth
- Config: configs/vgg/vgg19_b32x8_imagenet.py
In Collection: VGG
Metadata:
FLOPs: 19670000000
Parameters: 143670000
Name: vgg19_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 72.41
Top 5 Accuracy: 90.8
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.pth
- Config: configs/vgg/vgg11bn_b32x8_imagenet.py
In Collection: VGG
Metadata:
FLOPs: 7640000000
Parameters: 132870000
Name: vgg11bn_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 70.75
Top 5 Accuracy: 90.12
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.pth
- Config: configs/vgg/vgg13bn_b32x8_imagenet.py
In Collection: VGG
Metadata:
FLOPs: 11360000000
Parameters: 133050000
Name: vgg13bn_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 72.15
Top 5 Accuracy: 90.71
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_bn_batch256_imagenet_20210207-1a8b7864.pth
- Config: configs/vgg/vgg16_b32x8_imagenet.py
In Collection: VGG
Metadata:
FLOPs: 15530000000
Parameters: 138370000
Name: vgg16_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 73.72
Top 5 Accuracy: 91.68
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_bn_batch256_imagenet_20210208-7e55cd29.pth
- Config: configs/vgg/vgg19bn_b32x8_imagenet.py
In Collection: VGG
Metadata:
FLOPs: 19700000000
Parameters: 143680000
Name: vgg19bn_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 74.7
Top 5 Accuracy: 92.24
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.pth
- Name: vgg11_b32x8_imagenet
Metadata:
FLOPs: 7630000000
Parameters: 132860000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 68.75
Top 5 Accuracy: 88.87
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_batch256_imagenet_20210208-4271cd6c.pth
Config: configs/vgg/vgg11_b32x8_imagenet.py
- Name: vgg13_b32x8_imagenet
Metadata:
FLOPs: 11340000000
Parameters: 133050000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 70.02
Top 5 Accuracy: 89.46
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_batch256_imagenet_20210208-4d1d6080.pth
Config: configs/vgg/vgg13_b32x8_imagenet.py
- Name: vgg16_b32x8_imagenet
Metadata:
FLOPs: 15500000000
Parameters: 138360000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 71.62
Top 5 Accuracy: 90.49
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.pth
Config: configs/vgg/vgg16_b32x8_imagenet.py
- Name: vgg19_b32x8_imagenet
Metadata:
FLOPs: 19670000000
Parameters: 143670000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 72.41
Top 5 Accuracy: 90.8
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.pth
Config: configs/vgg/vgg19_b32x8_imagenet.py
- Name: vgg11bn_b32x8_imagenet
Metadata:
FLOPs: 7640000000
Parameters: 132870000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 70.75
Top 5 Accuracy: 90.12
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.pth
Config: configs/vgg/vgg11bn_b32x8_imagenet.py
- Name: vgg13bn_b32x8_imagenet
Metadata:
FLOPs: 11360000000
Parameters: 133050000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 72.15
Top 5 Accuracy: 90.71
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_bn_batch256_imagenet_20210207-1a8b7864.pth
Config: configs/vgg/vgg13bn_b32x8_imagenet.py
- Name: vgg16_b32x8_imagenet
Metadata:
FLOPs: 15530000000
Parameters: 138370000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 73.72
Top 5 Accuracy: 91.68
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_bn_batch256_imagenet_20210208-7e55cd29.pth
Config: configs/vgg/vgg16_b32x8_imagenet.py
- Name: vgg19bn_b32x8_imagenet
Metadata:
FLOPs: 19700000000
Parameters: 143680000
In Collection: VGG
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 74.7
Top 5 Accuracy: 92.24
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.pth
Config: configs/vgg/vgg19bn_b32x8_imagenet.py