Merge branch 'dev/resnext' into 'master'
Add ResNeXt See merge request open-mmlab/mmclassification!14pull/2/head
commit
5c95cc4c5a
|
@ -1,3 +1,4 @@
|
|||
from .resnet import ResNet, ResNetV1d
|
||||
from .resnext import ResNeXt
|
||||
|
||||
__all__ = ['ResNet', 'ResNetV1d']
|
||||
__all__ = ['ResNet', 'ResNeXt', 'ResNetV1d']
|
||||
|
|
|
@ -0,0 +1,132 @@
|
|||
import math
|
||||
|
||||
from mmcv.cnn import build_conv_layer, build_norm_layer
|
||||
|
||||
from ..builder import BACKBONES
|
||||
from .resnet import Bottleneck as _Bottleneck
|
||||
from .resnet import ResLayer, ResNet
|
||||
|
||||
|
||||
class Bottleneck(_Bottleneck):
|
||||
"""Bottleneck block for ResNeXt.
|
||||
|
||||
Args:
|
||||
inplanes (int): inplanes of block.
|
||||
planes (int): planes of block.
|
||||
groups (int): group of convolution.
|
||||
base_width (int): Base width of resnext.
|
||||
base_channels (int): Number of base channels of hidden layer.
|
||||
stride (int): stride of the block. Default: 1
|
||||
dilation (int): dilation of convolution. Default: 1
|
||||
downsample (nn.Module): downsample operation on identity branch.
|
||||
Default: None
|
||||
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
|
||||
layer is the 3x3 conv layer, otherwise the stride-two layer is
|
||||
the first 1x1 conv layer.
|
||||
conv_cfg (dict): dictionary to construct and config conv layer.
|
||||
Default: None
|
||||
norm_cfg (dict): dictionary to construct and config norm layer.
|
||||
Default: dict(type='BN')
|
||||
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
|
||||
memory while slowing down the training speed.
|
||||
"""
|
||||
|
||||
expansion = 4
|
||||
|
||||
def __init__(self,
|
||||
inplanes,
|
||||
planes,
|
||||
groups=1,
|
||||
base_width=4,
|
||||
base_channels=64,
|
||||
**kwargs):
|
||||
super(Bottleneck, self).__init__(inplanes, planes, **kwargs)
|
||||
|
||||
if groups == 1:
|
||||
width = self.planes
|
||||
else:
|
||||
width = math.floor(self.planes *
|
||||
(base_width / base_channels)) * groups
|
||||
|
||||
self.norm1_name, norm1 = build_norm_layer(
|
||||
self.norm_cfg, width, postfix=1)
|
||||
self.norm2_name, norm2 = build_norm_layer(
|
||||
self.norm_cfg, width, postfix=2)
|
||||
self.norm3_name, norm3 = build_norm_layer(
|
||||
self.norm_cfg, self.planes * self.expansion, postfix=3)
|
||||
|
||||
self.conv1 = build_conv_layer(
|
||||
self.conv_cfg,
|
||||
self.inplanes,
|
||||
width,
|
||||
kernel_size=1,
|
||||
stride=self.conv1_stride,
|
||||
bias=False)
|
||||
self.add_module(self.norm1_name, norm1)
|
||||
self.conv2 = build_conv_layer(
|
||||
self.conv_cfg,
|
||||
width,
|
||||
width,
|
||||
kernel_size=3,
|
||||
stride=self.conv2_stride,
|
||||
padding=self.dilation,
|
||||
dilation=self.dilation,
|
||||
groups=groups,
|
||||
bias=False)
|
||||
|
||||
self.add_module(self.norm2_name, norm2)
|
||||
self.conv3 = build_conv_layer(
|
||||
self.conv_cfg,
|
||||
width,
|
||||
self.planes * self.expansion,
|
||||
kernel_size=1,
|
||||
bias=False)
|
||||
self.add_module(self.norm3_name, norm3)
|
||||
|
||||
|
||||
@BACKBONES.register_module()
|
||||
class ResNeXt(ResNet):
|
||||
"""ResNeXt backbone.
|
||||
|
||||
Args:
|
||||
groups (int): Group of resnext.
|
||||
base_width (int): Base width of resnext.
|
||||
depth (int): Depth of resnext, from {50, 101, 152}.
|
||||
in_channels (int): Number of input image channels. Default: 3.
|
||||
base_channels (int): Number of base channels of hidden layer.
|
||||
num_stages (int): Resnet stages. Default: 4.
|
||||
strides (Sequence[int]): Strides of the first block of each stage.
|
||||
dilations (Sequence[int]): Dilation of each stage.
|
||||
out_indices (Sequence[int]): Output from which stages.
|
||||
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
|
||||
layer is the 3x3 conv layer, otherwise the stride-two layer is
|
||||
the first 1x1 conv layer.
|
||||
frozen_stages (int): Stages to be frozen (all param fixed). -1 means
|
||||
not freezing any parameters.
|
||||
norm_cfg (dict): dictionary to construct and config norm layer.
|
||||
norm_eval (bool): Whether to set norm layers to eval mode, namely,
|
||||
freeze running stats (mean and var). Note: Effect on Batch Norm
|
||||
and its variants only.
|
||||
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
|
||||
memory while slowing down the training speed.
|
||||
zero_init_residual (bool): whether to use zero init for last norm layer
|
||||
in resblocks to let them behave as identity.
|
||||
"""
|
||||
|
||||
arch_settings = {
|
||||
50: (Bottleneck, (3, 4, 6, 3)),
|
||||
101: (Bottleneck, (3, 4, 23, 3)),
|
||||
152: (Bottleneck, (3, 8, 36, 3))
|
||||
}
|
||||
|
||||
def __init__(self, groups=1, base_width=4, **kwargs):
|
||||
self.groups = groups
|
||||
self.base_width = base_width
|
||||
super(ResNeXt, self).__init__(**kwargs)
|
||||
|
||||
def make_res_layer(self, **kwargs):
|
||||
return ResLayer(
|
||||
groups=self.groups,
|
||||
base_width=self.base_width,
|
||||
base_channels=self.base_channels,
|
||||
**kwargs)
|
|
@ -0,0 +1,66 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
from mmcls.models.backbones import ResNeXt
|
||||
from mmcls.models.backbones.resnext import Bottleneck as BottleneckX
|
||||
|
||||
|
||||
def is_block(modules):
|
||||
"""Check if is ResNeXt building block."""
|
||||
if isinstance(modules, (BottleneckX)):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def test_resnext_bottleneck():
|
||||
with pytest.raises(AssertionError):
|
||||
# Style must be in ['pytorch', 'caffe']
|
||||
BottleneckX(64, 64, groups=32, base_width=4, style='tensorflow')
|
||||
|
||||
# Test ResNeXt Bottleneck structure
|
||||
block = BottleneckX(
|
||||
64, 64, groups=32, base_width=4, stride=2, style='pytorch')
|
||||
assert block.conv2.stride == (2, 2)
|
||||
assert block.conv2.groups == 32
|
||||
assert block.conv2.out_channels == 128
|
||||
|
||||
# Test ResNeXt Bottleneck forward
|
||||
block = BottleneckX(64, 16, groups=32, base_width=4)
|
||||
x = torch.randn(1, 64, 56, 56)
|
||||
x_out = block(x)
|
||||
assert x_out.shape == torch.Size([1, 64, 56, 56])
|
||||
|
||||
|
||||
def test_resnext_backbone():
|
||||
with pytest.raises(KeyError):
|
||||
# ResNeXt depth should be in [50, 101, 152]
|
||||
ResNeXt(depth=18)
|
||||
|
||||
# Test ResNeXt with group 32, base_width 4
|
||||
model = ResNeXt(
|
||||
depth=50, groups=32, base_width=4, out_indices=(0, 1, 2, 3))
|
||||
for m in model.modules():
|
||||
if is_block(m):
|
||||
assert m.conv2.groups == 32
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 224, 224)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 4
|
||||
assert feat[0].shape == torch.Size([1, 256, 56, 56])
|
||||
assert feat[1].shape == torch.Size([1, 512, 28, 28])
|
||||
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
|
||||
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
|
||||
|
||||
# Test ResNeXt with group 32, base_width 4 and layers 3 out forward
|
||||
model = ResNeXt(depth=50, groups=32, base_width=4, out_indices=(3, ))
|
||||
for m in model.modules():
|
||||
if is_block(m):
|
||||
assert m.conv2.groups == 32
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 224, 224)
|
||||
feat = model(imgs)
|
||||
assert feat.shape == torch.Size([1, 2048, 7, 7])
|
Loading…
Reference in New Issue