[Feature] Add metrics for single-label classification.

pull/913/head
mzr1996 2022-05-17 19:21:39 +08:00
parent 93a27c8324
commit 6ad75f0076
3 changed files with 858 additions and 0 deletions
tests/test_metrics

View File

@ -0,0 +1,4 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .single_label import Accuracy, SingleLabelMetric
__all__ = ['Accuracy', 'SingleLabelMetric']

View File

@ -0,0 +1,554 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Union
import mmengine
import numpy as np
import torch
import torch.nn.functional as F
from mmengine.evaluator import BaseMetric
from mmcls.registry import METRICS
def to_tensor(value):
"""Convert value to torch.Tensor."""
if isinstance(value, np.ndarray):
value = torch.from_numpy(value)
elif isinstance(value, Sequence) and not mmengine.is_str(value):
value = torch.tensor(value)
elif not isinstance(value, torch.Tensor):
raise TypeError(f'{type(value)} is not an available argument.')
return value
@METRICS.register_module()
class Accuracy(BaseMetric):
"""Top-k accuracy evaluation metric.
Args:
topk (int | Sequence[int]): If the predictions in ``topk``
matches the target, the predictions will be regarded as
correct ones. Defaults to 1.
thrs (Sequence[float | None] | float | None): Predictions with scores
under the thresholds are considered negative. None means no
thresholds. Default to 0.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Defaults to None.
Examples:
>>> import torch
>>> from mmcls.metrics import Accuracy
>>> # -------------------- The Basic Usage --------------------
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> Accuracy.calculate(y_pred, y_true)
tensor([50.])
>>> # Calculate the top1 and top5 accuracy.
>>> y_score = torch.rand((1000, 10))
>>> y_true = torch.zeros((1000, ))
>>> Accuracy.calculate(y_score, y_true, topk=(1, 5))
[[tensor([9.9000])], [tensor([51.5000])]]
>>>
>>> # ------------------- Use with Evalutor -------------------
>>> from mmcls.core import ClsDataSample
>>> from mmengine.evaluator import Evaluator
>>> data_batch = [{
... 'inputs': None, # In this example, the `inputs` is not used.
... 'data_sample': ClsDataSample().set_gt_label(0)
... } for i in range(1000)]
>>> pred = [
... ClsDataSample().set_pred_score(torch.rand(10))
... for i in range(1000)
... ]
>>> evaluator = Evaluator(metrics=Accuracy(topk=(1, 5)))
>>> evaluator.process(data_batch, pred)
>>> evaluator.evaluate(1000)
{
'accuracy/top1': 9.300000190734863,
'accuracy/top5': 51.20000076293945
}
"""
default_prefix: Optional[str] = 'accuracy'
def __init__(self,
topk: Union[int, Sequence[int]] = (1, ),
thrs: Union[float, Sequence[Union[float, None]], None] = 0.,
collect_device: str = 'cpu',
prefix: Optional[str] = None) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
if isinstance(topk, int):
self.topk = (topk, )
else:
self.topk = tuple(topk)
if isinstance(thrs, float) or thrs is None:
self.thrs = (thrs, )
else:
self.thrs = tuple(thrs)
def process(self, data_batch: Sequence[dict], predictions: Sequence[dict]):
"""Process one batch of data and predictions.
The processed results should be stored in ``self.results``, which will
be used to computed the metrics when all batches have been processed.
Args:
data_batch (Sequence[dict]): A batch of data from the dataloader.
predictions (Sequence[dict]): A batch of outputs from the model.
"""
for data, pred in zip(data_batch, predictions):
result = dict()
pred_label = pred['pred_label']
# Use gt_label in the pred dict preferentially.
gt_label = pred.get('gt_label', data['data_sample']['gt_label'])
if 'score' in pred_label:
result['pred_score'] = pred_label['score'].cpu()
else:
result['pred_label'] = pred_label['label'].cpu()
result['gt_label'] = gt_label['label'].cpu()
# Save the result to `self.results`.
self.results.append(result)
def compute_metrics(self, results: List):
"""Compute the metrics from processed results.
Args:
results (dict): The processed results of each batch.
Returns:
Dict: The computed metrics. The keys are the names of the metrics,
and the values are corresponding results.
"""
# NOTICE: don't access `self.results` from the method.
metrics = {}
# concat
target = torch.cat([res['gt_label'] for res in results])
if 'pred_score' in results[0]:
pred = torch.stack([res['pred_score'] for res in results])
try:
acc = self.calculate(pred, target, self.topk, self.thrs)
except ValueError as e:
# If the topk is invalid.
raise ValueError(
str(e) + ' Please check the `val_evaluator` and '
'`test_evaluator` fields in your config file.')
multi_thrs = len(self.thrs) > 1
for i, k in enumerate(self.topk):
for j, thr in enumerate(self.thrs):
name = f'top{k}'
if multi_thrs:
name += '_no-thr' if thr is None else f'_thr-{thr:.2f}'
metrics[name] = acc[i][j].item()
else:
# If only label in the `pred_label`.
pred = torch.cat([res['pred_label'] for res in results])
acc = self.calculate(pred, target, self.topk, self.thrs)
metrics['top1'] = acc.item()
return metrics
@staticmethod
def calculate(
pred: Union[torch.Tensor, np.ndarray, Sequence],
target: Union[torch.Tensor, np.ndarray, Sequence],
topk: Sequence[int] = (1, ),
thrs: Sequence[Union[float, None]] = (0., ),
) -> Union[torch.Tensor, List[List[torch.Tensor]]]:
"""Calculate the accuracy.
Args:
pred (torch.Tensor | np.ndarray | Sequence): The prediction
results. It can be labels (N, ), or scores of every
class (N, C).
target (torch.Tensor | np.ndarray | Sequence): The target of
each prediction with shape (N, ).
thrs (Sequence[float | None]): Predictions with scores under
the thresholds are considered negative. It's only used
when ``pred`` is scores. None means no thresholds.
Default to (0., ).
thrs (Sequence[float]): Predictions with scores under
the thresholds are considered negative. It's only used
when ``pred`` is scores. Default to (0., ).
Returns:
torch.Tensor | List[List[torch.Tensor]]: Accuracy.
- torch.Tensor: If the ``pred`` is a sequence of label instead of
score (number of dimensions is 1). Only return a top-1 accuracy
tensor, and ignore the argument ``topk` and ``thrs``.
- List[List[torch.Tensor]]: If the ``pred`` is a sequence of score
(number of dimensions is 2). Return the accuracy on each ``topk``
and ``thrs``. And the first dim is ``topk``, the second dim is
``thrs``.
"""
pred = to_tensor(pred)
target = to_tensor(target).to(torch.int64)
num = pred.size(0)
assert pred.size(0) == target.size(0), \
f"The size of pred ({pred.size(0)}) doesn't match "\
f'the target ({target.size(0)}).'
if pred.ndim == 1:
# For pred label, ignore topk and acc
pred_label = pred.int()
correct = pred.eq(target).float().sum(0, keepdim=True)
acc = correct.mul_(100. / num)
return acc
else:
# For pred score, calculate on all topk and thresholds.
pred = pred.float()
maxk = max(topk)
if maxk > pred.size(1):
raise ValueError(
f'Top-{maxk} accuracy is unavailable since the number of '
f'categories is {pred.size(1)}.')
pred_score, pred_label = pred.topk(maxk, dim=1)
pred_label = pred_label.t()
correct = pred_label.eq(target.view(1, -1).expand_as(pred_label))
results = []
for k in topk:
results.append([])
for thr in thrs:
# Only prediction values larger than thr are counted
# as correct
_correct = correct
if thr is not None:
_correct = _correct & (pred_score.t() > thr)
correct_k = _correct[:k].reshape(-1).float().sum(
0, keepdim=True)
acc = correct_k.mul_(100. / num)
results[-1].append(acc)
return results
@METRICS.register_module()
class SingleLabelMetric(BaseMetric):
"""A collection of metrics for single-label multi-class classification task
based on confusion matrix.
It includes precision, recall, f1-score and support. Comparing with
:class:`Accuracy`, these metrics doesn't support topk, but supports
various average mode.
Args:
thrs (Sequence[float | None] | float | None): Predictions with scores
under the thresholds are considered negative. None means no
thresholds. Default to 0.
items (Sequence[str]): The detailed metric items to evaluate. Here is
the available options:
- `"precision"`: The ratio tp / (tp + fp) where tp is the
number of true positives and fp the number of false
positives.
- `"recall"`: The ratio tp / (tp + fn) where tp is the number
of true positives and fn the number of false negatives.
- `"f1-score"`: The f1-score is the harmonic mean of the
precision and recall.
- `"support"`: The total number of occurrences of each category
in the target.
Defaults to ('precision', 'recall', 'f1-score').
average (str, optional): The average method. If None, the scores
for each class are returned. And it supports two average modes:
- `"macro"`: Calculate metrics for each category, and calculate
the mean value over all categories.
- `"micro"`: Calculate metrics globally by counting the total
true positives, false negatives and false positives.
Defaults to "macro".
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Defaults to None.
Examples:
>>> import torch
>>> from mmcls.metrics import SingleLabelMetric
>>> # -------------------- The Basic Usage --------------------
>>> y_pred = [0, 1, 1, 3]
>>> y_true = [0, 2, 1, 3]
>>> # Output precision, recall, f1-score and support.
>>> SingleLabelMetric.calculate(y_pred, y_true, num_classes=4)
(tensor(62.5000, dtype=torch.float64),
tensor(75., dtype=torch.float64),
tensor(66.6667, dtype=torch.float64),
tensor(4))
>>> # Calculate with different thresholds.
>>> y_score = torch.rand((1000, 10))
>>> y_true = torch.zeros((1000, ))
>>> SingleLabelMetric.calculate(y_score, y_true, thrs=(0., 0.9))
[(tensor(10., dtype=torch.float64),
tensor(1.2100, dtype=torch.float64),
tensor(2.1588, dtype=torch.float64),
tensor(1000)),
(tensor(10., dtype=torch.float64),
tensor(0.8200, dtype=torch.float64),
tensor(1.5157, dtype=torch.float64),
tensor(1000))]
>>>
>>> # ------------------- Use with Evalutor -------------------
>>> from mmcls.core import ClsDataSample
>>> from mmengine.evaluator import Evaluator
>>> data_batch = [{
... 'inputs': None, # In this example, the `inputs` is not used.
... 'data_sample': ClsDataSample().set_gt_label(i%5)
... } for i in range(1000)]
>>> pred = [
... ClsDataSample().set_pred_score(torch.rand(5))
... for i in range(1000)
... ]
>>> evaluator = Evaluator(metrics=SingleLabelMetric())
>>> evaluator.process(data_batch, pred)
>>> evaluator.evaluate(1000)
{
'single-label/precision': 10.0,
'single-label/recall': 0.96,
'single-label/f1-score': 1.7518248175182483
}
>>> # Evaluate on each class
>>> evaluator = Evaluator(metrics=SingleLabelMetric(average=None))
>>> evaluator.process(data_batch, pred)
>>> evaluator.evaluate(1000)
{
'single-label/precision': [21.14, 18.69, 17.17, 19.42, 16.14],
'single-label/recall': [18.5, 18.5, 17.0, 20.0, 18.0],
'single-label/f1-score': [19.73, 18.59, 17.09, 19.70, 17.02]
}
"""
default_prefix: Optional[str] = 'single-label'
def __init__(self,
thrs: Union[float, Sequence[Union[float, None]], None] = 0.,
items: Sequence[str] = ('precision', 'recall', 'f1-score'),
average: Optional[str] = 'macro',
collect_device: str = 'cpu',
prefix: Optional[str] = None) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
if isinstance(thrs, float) or thrs is None:
self.thrs = (thrs, )
else:
self.thrs = tuple(thrs)
for item in items:
assert item in ['precision', 'recall', 'f1-score', 'support'], \
f'The metric {item} is not supported by `SingleLabelMetric`,' \
' please specicy from "precision", "recall", "f1-score" and ' \
'"support".'
self.items = tuple(items)
self.average = average
def process(self, data_batch: Sequence[dict], predictions: Sequence[dict]):
"""Process one batch of data and predictions.
The processed results should be stored in ``self.results``, which will
be used to computed the metrics when all batches have been processed.
Args:
data_batch (Sequence[dict]): A batch of data from the dataloader.
predictions (Sequence[dict]): A batch of outputs from the model.
"""
for data, pred in zip(data_batch, predictions):
result = dict()
pred_label = pred['pred_label']
# Use gt_label in the pred dict preferentially.
gt_label = pred.get('gt_label', data['data_sample']['gt_label'])
if 'score' in pred_label:
result['pred_score'] = pred_label['score'].cpu()
elif ('num_classes' in pred_label
or 'num_classes' in data['data_sample']):
result['pred_label'] = pred_label['label'].cpu()
result['num_classes'] = pred_label.get(
'num_classes', None) or data['data_sample']['num_classes']
else:
raise ValueError('The `pred_label` in predictions do not '
'have neither `score` nor `num_classes`.')
result['gt_label'] = gt_label['label'].cpu()
# Save the result to `self.results`.
self.results.append(result)
def compute_metrics(self, results: List):
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
Dict: The computed metrics. The keys are the names of the metrics,
and the values are corresponding results.
"""
# NOTICE: don't access `self.results` from the method. `self.results`
# are a list of results from multiple batch, while the input `results`
# are the collected results.
metrics = {}
def pack_results(precision, recall, f1_score, support):
single_metrics = {}
if 'precision' in self.items:
single_metrics['precision'] = precision
if 'recall' in self.items:
single_metrics['recall'] = recall
if 'f1-score' in self.items:
single_metrics['f1-score'] = f1_score
if 'support' in self.items:
single_metrics['support'] = support
return single_metrics
# concat
target = torch.cat([res['gt_label'] for res in results])
if 'pred_score' in results[0]:
pred = torch.stack([res['pred_score'] for res in results])
metrics_list = self.calculate(
pred, target, thrs=self.thrs, average=self.average)
multi_thrs = len(self.thrs) > 1
for i, thr in enumerate(self.thrs):
if multi_thrs:
suffix = '_no-thr' if thr is None else f'_thr-{thr:.2f}'
else:
suffix = ''
for k, v in pack_results(*metrics_list[i]).items():
metrics[k + suffix] = v
else:
# If only label in the `pred_label`.
pred = torch.cat([res['pred_label'] for res in results])
res = self.calculate(
pred,
target,
average=self.average,
num_classes=results[0]['num_classes'])
metrics = pack_results(*res)
for k, v in metrics.items():
if self.average is not None:
metrics[k] = v.item()
else:
metrics[k] = v.cpu().detach().tolist()
return metrics
@staticmethod
def calculate(
pred: Union[torch.Tensor, np.ndarray, Sequence],
target: Union[torch.Tensor, np.ndarray, Sequence],
thrs: Sequence[Union[float, None]] = (0., ),
average: Optional[str] = 'macro',
num_classes: Optional[int] = None,
) -> Union[torch.Tensor, List[torch.Tensor]]:
"""Calculate the precision, recall, f1-score and support.
Args:
pred (torch.Tensor | np.ndarray | Sequence): The prediction
results. It can be labels (N, ), or scores of every
class (N, C).
target (torch.Tensor | np.ndarray | Sequence): The target of
each prediction with shape (N, ).
thrs (Sequence[float | None]): Predictions with scores under
the thresholds are considered negative. It's only used
when ``pred`` is scores. None means no thresholds.
Default to (0., ).
average (str, optional): The average method. If None, the scores
for each class are returned. And it supports two average modes:
- `"macro"`: Calculate metrics for each category, and
calculate the mean value over all categories.
- `"micro"`: Calculate metrics globally by counting the
total true positives, false negatives and false
positives.
Defaults to "macro".
num_classes (Optional, int): The number of classes. If the ``pred``
is label instead of scores, this argument is required.
Defaults to None.
Returns:
Tuple: The tuple contains precision, recall and f1-score.
And the type of each item is:
- torch.Tensor: If the ``pred`` is a sequence of label instead of
score (number of dimensions is 1). Only returns a tensor for
each metric. The shape is (1, ) if ``classwise`` is False, and
(C, ) if ``classwise`` is True.
- List[torch.Tensor]: If the ``pred`` is a sequence of score
(number of dimensions is 2). Return the metrics on each ``thrs``.
The shape of tensor is (1, ) if ``classwise`` is False, and (C, )
if ``classwise`` is True.
"""
average_options = ['micro', 'macro', None]
assert average in average_options, 'Invalid `average` argument, ' \
f'please specicy from {average_options}.'
pred = to_tensor(pred)
target = to_tensor(target).to(torch.int64)
assert pred.size(0) == target.size(0), \
f"The size of pred ({pred.size(0)}) doesn't match "\
f'the target ({target.size(0)}).'
def _do_calculate(pred_positive, gt_positive):
class_correct = (pred_positive & gt_positive)
if average == 'micro':
tp_sum = class_correct.sum()
pred_sum = pred_positive.sum()
gt_sum = gt_positive.sum()
else:
tp_sum = class_correct.sum(0)
pred_sum = pred_positive.sum(0)
gt_sum = gt_positive.sum(0)
precision = tp_sum / np.maximum(pred_sum, 1.) * 100
recall = tp_sum / np.maximum(gt_sum, 1.) * 100
f1_score = 2 * precision * recall / np.maximum(
precision + recall,
torch.finfo(torch.float32).eps)
if average in ['macro', 'micro']:
precision = precision.mean(0, keepdim=True)
recall = recall.mean(0, keepdim=True)
f1_score = f1_score.mean(0, keepdim=True)
support = gt_sum.sum(0, keepdim=True)
else:
support = gt_sum
return precision, recall, f1_score, support
if pred.ndim == 1:
assert num_classes is not None, \
'Please specicy the `num_classes` if the `pred` is labels ' \
'intead of scores.'
gt_positive = F.one_hot(target.flatten(), num_classes)
pred_positive = F.one_hot(pred.to(torch.int64), num_classes)
return _do_calculate(pred_positive, gt_positive)
else:
# For pred score, calculate on all thresholds.
num_classes = pred.size(1)
pred_score, pred_label = torch.topk(pred, k=1)
pred_score = pred_score.flatten()
pred_label = pred_label.flatten()
gt_positive = F.one_hot(target.flatten(), num_classes)
results = []
for thr in thrs:
pred_positive = F.one_hot(pred_label, num_classes)
if thr is not None:
pred_positive[pred_score <= thr] = 0
results.append(_do_calculate(pred_positive, gt_positive))
return results

View File

@ -0,0 +1,300 @@
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from unittest import TestCase
import numpy as np
import torch
from mmcls.core import ClsDataSample
from mmcls.metrics import Accuracy, SingleLabelMetric
from mmcls.registry import METRICS
class TestAccuracy(TestCase):
def test_evaluate(self):
"""Test using the metric in the same way as Evalutor."""
data_batch = [{
'data_sample': ClsDataSample().set_gt_label(i).to_dict()
} for i in [0, 0, 1, 2, 1, 0]]
pred = [
ClsDataSample().set_pred_score(i).set_pred_label(j).to_dict()
for i, j in zip([
torch.tensor([0.7, 0.0, 0.3]),
torch.tensor([0.5, 0.2, 0.3]),
torch.tensor([0.4, 0.5, 0.1]),
torch.tensor([0.0, 0.0, 1.0]),
torch.tensor([0.0, 0.0, 1.0]),
torch.tensor([0.0, 0.0, 1.0]),
], [0, 0, 1, 2, 2, 2])
]
# Test with score (use score instead of label if score exists)
metric = METRICS.build(dict(type='Accuracy', thrs=0.6))
metric.process(data_batch, pred)
acc = metric.evaluate(6)
self.assertIsInstance(acc, dict)
self.assertAlmostEqual(acc['accuracy/top1'], 2 / 6 * 100, places=4)
# Test with multiple thrs
metric = METRICS.build(dict(type='Accuracy', thrs=(0., 0.6, None)))
metric.process(data_batch, pred)
acc = metric.evaluate(6)
self.assertSetEqual(
set(acc.keys()), {
'accuracy/top1_thr-0.00', 'accuracy/top1_thr-0.60',
'accuracy/top1_no-thr'
})
# Test with invalid topk
with self.assertRaisesRegex(ValueError, 'check the `val_evaluator`'):
metric = METRICS.build(dict(type='Accuracy', topk=(1, 5)))
metric.process(data_batch, pred)
metric.evaluate(6)
# Test with label
for sample in pred:
del sample['pred_label']['score']
metric = METRICS.build(dict(type='Accuracy', thrs=(0., 0.6, None)))
metric.process(data_batch, pred)
acc = metric.evaluate(6)
self.assertIsInstance(acc, dict)
self.assertAlmostEqual(acc['accuracy/top1'], 4 / 6 * 100, places=4)
# Test initialization
metric = METRICS.build(dict(type='Accuracy', thrs=0.6))
self.assertTupleEqual(metric.thrs, (0.6, ))
metric = METRICS.build(dict(type='Accuracy', thrs=[0.6]))
self.assertTupleEqual(metric.thrs, (0.6, ))
metric = METRICS.build(dict(type='Accuracy', topk=5))
self.assertTupleEqual(metric.topk, (5, ))
metric = METRICS.build(dict(type='Accuracy', topk=[5]))
self.assertTupleEqual(metric.topk, (5, ))
def test_calculate(self):
"""Test using the metric from static method."""
# Test with score
y_true = np.array([0, 0, 1, 2, 1, 0])
y_label = torch.tensor([0, 0, 1, 2, 2, 2])
y_score = [
[0.7, 0.0, 0.3],
[0.5, 0.2, 0.3],
[0.4, 0.5, 0.1],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
]
# Test with score
acc = Accuracy.calculate(y_score, y_true, thrs=(0.6, ))
self.assertIsInstance(acc, list)
self.assertIsInstance(acc[0], list)
self.assertIsInstance(acc[0][0], torch.Tensor)
self.assertTensorEqual(acc[0][0], 2 / 6 * 100)
# Test with label
acc = Accuracy.calculate(y_label, y_true, thrs=(0.6, ))
self.assertIsInstance(acc, torch.Tensor)
# the thrs will be ignored
self.assertTensorEqual(acc, 4 / 6 * 100)
# Test with invalid inputs
with self.assertRaisesRegex(TypeError, "<class 'str'> is not"):
Accuracy.calculate(y_label, 'hi')
# Test with invalid topk
with self.assertRaisesRegex(ValueError, 'Top-5 accuracy .* is 3'):
Accuracy.calculate(y_score, y_true, topk=(1, 5))
def assertTensorEqual(self,
tensor: torch.Tensor,
value: float,
msg=None,
**kwarg):
tensor = tensor.to(torch.float32)
value = torch.FloatTensor([value])
try:
torch.testing.assert_allclose(tensor, value, **kwarg)
except AssertionError as e:
self.fail(self._formatMessage(msg, str(e)))
class TestSingleLabel(TestCase):
def test_evaluate(self):
"""Test using the metric in the same way as Evalutor."""
data_batch = [{
'data_sample': ClsDataSample().set_gt_label(i).to_dict()
} for i in [0, 0, 1, 2, 1, 0]]
pred = [
ClsDataSample().set_pred_score(i).set_pred_label(j).to_dict()
for i, j in zip([
torch.tensor([0.7, 0.0, 0.3]),
torch.tensor([0.5, 0.2, 0.3]),
torch.tensor([0.4, 0.5, 0.1]),
torch.tensor([0.0, 0.0, 1.0]),
torch.tensor([0.0, 0.0, 1.0]),
torch.tensor([0.0, 0.0, 1.0]),
], [0, 0, 1, 2, 2, 2])
]
# Test with score (use score instead of label if score exists)
metric = METRICS.build(
dict(
type='SingleLabelMetric',
thrs=0.6,
items=('precision', 'recall', 'f1-score', 'support')))
metric.process(data_batch, pred)
res = metric.evaluate(6)
self.assertIsInstance(res, dict)
self.assertAlmostEqual(
res['single-label/precision'], (1 + 0 + 1 / 3) / 3 * 100, places=4)
self.assertAlmostEqual(
res['single-label/recall'], (1 / 3 + 0 + 1) / 3 * 100, places=4)
self.assertAlmostEqual(
res['single-label/f1-score'], (1 / 2 + 0 + 1 / 2) / 3 * 100,
places=4)
self.assertEqual(res['single-label/support'], 6)
# Test with multiple thrs
metric = METRICS.build(
dict(type='SingleLabelMetric', thrs=(0., 0.6, None)))
metric.process(data_batch, pred)
res = metric.evaluate(6)
self.assertSetEqual(
set(res.keys()), {
'single-label/precision_thr-0.00',
'single-label/recall_thr-0.00',
'single-label/f1-score_thr-0.00',
'single-label/precision_thr-0.60',
'single-label/recall_thr-0.60',
'single-label/f1-score_thr-0.60',
'single-label/precision_no-thr', 'single-label/recall_no-thr',
'single-label/f1-score_no-thr'
})
# Test with average mode "micro"
metric = METRICS.build(
dict(
type='SingleLabelMetric',
average='micro',
items=('precision', 'recall', 'f1-score', 'support')))
metric.process(data_batch, pred)
res = metric.evaluate(6)
self.assertIsInstance(res, dict)
self.assertAlmostEqual(res['single-label/precision'], 66.666, places=2)
self.assertAlmostEqual(res['single-label/recall'], 66.666, places=2)
self.assertAlmostEqual(res['single-label/f1-score'], 66.666, places=2)
self.assertEqual(res['single-label/support'], 6)
# Test with average mode None
metric = METRICS.build(
dict(
type='SingleLabelMetric',
average=None,
items=('precision', 'recall', 'f1-score', 'support')))
metric.process(data_batch, pred)
res = metric.evaluate(6)
self.assertIsInstance(res, dict)
precision = res['single-label/precision']
self.assertAlmostEqual(precision[0], 100., places=4)
self.assertAlmostEqual(precision[1], 100., places=4)
self.assertAlmostEqual(precision[2], 1 / 3 * 100, places=4)
recall = res['single-label/recall']
self.assertAlmostEqual(recall[0], 2 / 3 * 100, places=4)
self.assertAlmostEqual(recall[1], 50., places=4)
self.assertAlmostEqual(recall[2], 100., places=4)
f1_score = res['single-label/f1-score']
self.assertAlmostEqual(f1_score[0], 80., places=4)
self.assertAlmostEqual(f1_score[1], 2 / 3 * 100, places=4)
self.assertAlmostEqual(f1_score[2], 50., places=4)
self.assertEqual(res['single-label/support'], [3, 2, 1])
# Test with label, the thrs will be ignored
pred_no_score = copy.deepcopy(pred)
for sample in pred_no_score:
del sample['pred_label']['score']
metric = METRICS.build(dict(type='SingleLabelMetric', thrs=(0., 0.6)))
metric.process(data_batch, pred_no_score)
res = metric.evaluate(6)
self.assertIsInstance(res, dict)
# Expected values come from sklearn
self.assertAlmostEqual(res['single-label/precision'], 77.777, places=2)
self.assertAlmostEqual(res['single-label/recall'], 72.222, places=2)
self.assertAlmostEqual(res['single-label/f1-score'], 65.555, places=2)
pred_no_num_classes = copy.deepcopy(pred_no_score)
for sample in pred_no_num_classes:
del sample['pred_label']['num_classes']
with self.assertRaisesRegex(ValueError, 'neither `score` nor'):
metric.process(data_batch, pred_no_num_classes)
# Test with empty items
metric = METRICS.build(dict(type='SingleLabelMetric', items=tuple()))
metric.process(data_batch, pred)
res = metric.evaluate(6)
self.assertIsInstance(res, dict)
self.assertEqual(len(res), 0)
metric.process(data_batch, pred_no_score)
res = metric.evaluate(6)
self.assertIsInstance(res, dict)
self.assertEqual(len(res), 0)
# Test initialization
metric = METRICS.build(dict(type='SingleLabelMetric', thrs=0.6))
self.assertTupleEqual(metric.thrs, (0.6, ))
metric = METRICS.build(dict(type='SingleLabelMetric', thrs=[0.6]))
self.assertTupleEqual(metric.thrs, (0.6, ))
def test_calculate(self):
"""Test using the metric from static method."""
# Test with score
y_true = np.array([0, 0, 1, 2, 1, 0])
y_label = torch.tensor([0, 0, 1, 2, 2, 2])
y_score = [
[0.7, 0.0, 0.3],
[0.5, 0.2, 0.3],
[0.4, 0.5, 0.1],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
]
# Test with score
res = SingleLabelMetric.calculate(y_score, y_true, thrs=(0.6, ))
self.assertIsInstance(res, list)
self.assertIsInstance(res[0], tuple)
precision, recall, f1_score, support = res[0]
self.assertTensorEqual(precision, (1 + 0 + 1 / 3) / 3 * 100)
self.assertTensorEqual(recall, (1 / 3 + 0 + 1) / 3 * 100)
self.assertTensorEqual(f1_score, (1 / 2 + 0 + 1 / 2) / 3 * 100)
self.assertTensorEqual(support, 6)
# Test with label
res = SingleLabelMetric.calculate(y_label, y_true, num_classes=3)
self.assertIsInstance(res, tuple)
precision, recall, f1_score, support = res
# Expected values come from sklearn
self.assertTensorEqual(precision, 77.7777)
self.assertTensorEqual(recall, 72.2222)
self.assertTensorEqual(f1_score, 65.5555)
self.assertTensorEqual(support, 6)
# Test with invalid inputs
with self.assertRaisesRegex(TypeError, "<class 'str'> is not"):
SingleLabelMetric.calculate(y_label, 'hi')
def assertTensorEqual(self,
tensor: torch.Tensor,
value: float,
msg=None,
**kwarg):
tensor = tensor.to(torch.float32)
value = torch.FloatTensor([value])
try:
torch.testing.assert_allclose(tensor, value, **kwarg)
except AssertionError as e:
self.fail(self._formatMessage(msg, str(e)))