[Refactor] Update dev scripts to be compatible with selfsup tasks. (#1412)

* [Refactor] Update dev scripts to be compatible with selfsup tasks.

* Fix some missing fields in config files.

* Set maximum number of gpus for local training.

* Update README files

* Update according to comments.
pull/1445/head
Ma Zerun 2023-03-20 14:30:57 +08:00 committed by GitHub
parent 4f5b38f225
commit 6cedce234e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
48 changed files with 1438 additions and 1158 deletions

View File

@ -1,25 +1,24 @@
import logging
import re
import sys
import tempfile
from argparse import ArgumentParser
from collections import OrderedDict
from pathlib import Path
from time import time
from time import perf_counter
from unittest.mock import Mock
import mmcv
import numpy as np
import torch
from mmengine import Config, DictAction, MMLogger
from mmengine import DictAction, MMLogger
from mmengine.dataset import Compose, default_collate
from mmengine.device import get_device
from mmengine.fileio import FileClient
from mmengine.model.utils import revert_sync_batchnorm
from mmengine.runner import Runner, load_checkpoint
from modelindex.load_model_index import load
from rich.console import Console
from rich.table import Table
from utils import substitute_weights
from mmpretrain.apis import get_model
from mmpretrain.apis import ModelHub, get_model, list_models
from mmpretrain.datasets import CIFAR10, CIFAR100, ImageNet
from mmpretrain.utils import register_all_modules
from mmpretrain.visualization import UniversalVisualizer
@ -33,6 +32,12 @@ classes_map = {
'CIFAR-100': CIFAR100.CLASSES,
}
logger = MMLogger.get_instance('validation', logger_name='mmpretrain')
logger.handlers[0].stream = sys.stderr
logger.addHandler(logging.FileHandler('benchmark_valid.log', mode='w'))
# Force to use the logger in runners.
Runner.build_logger = Mock(return_value=logger)
def parse_args():
parser = ArgumentParser(description='Valid all models in model-index.yml')
@ -76,12 +81,12 @@ def parse_args():
return args
def inference(config_file, checkpoint, work_dir, args, exp_name):
cfg = Config.fromfile(config_file)
def inference(metainfo, checkpoint, work_dir, args, exp_name=None):
cfg = metainfo.config
cfg.work_dir = work_dir
cfg.load_from = checkpoint
cfg.log_level = 'WARN'
cfg.experiment_name = exp_name
cfg.experiment_name = exp_name or metainfo.name
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
@ -102,11 +107,11 @@ def inference(config_file, checkpoint, work_dir, args, exp_name):
model.eval()
forward = model.val_step
else:
# For configs only for get model.
# For configs without data settings.
model = get_model(cfg, device=get_device())
model = revert_sync_batchnorm(model)
model.eval()
data = torch.empty(1, 3, 224, 224).to(model.data_preprocessor.device)
data = torch.rand(1, 3, 224, 224).to(model.data_preprocessor.device)
resolution = (224, 224)
forward = model.extract_feat
@ -114,40 +119,38 @@ def inference(config_file, checkpoint, work_dir, args, exp_name):
load_checkpoint(model, checkpoint, map_location='cpu')
# forward the model
result = {'resolution': resolution}
result = {'model': metainfo.name, 'resolution': resolution}
with torch.no_grad():
if args.inference_time:
time_record = []
forward(data) # warmup before profiling
for _ in range(10):
forward(data) # warmup before profiling
torch.cuda.synchronize()
start = time()
start = perf_counter()
forward(data)
torch.cuda.synchronize()
time_record.append((time() - start) / args.batch_size * 1000)
time_record.append(
(perf_counter() - start) / args.batch_size * 1000)
result['time_mean'] = np.mean(time_record[1:-1])
result['time_std'] = np.std(time_record[1:-1])
else:
forward(data)
result['model'] = config_file.stem
if args.flops:
from fvcore.nn import FlopCountAnalysis, parameter_count
from fvcore.nn.print_model_statistics import _format_size
from mmengine.analysis import FlopAnalyzer, parameter_count
from mmengine.analysis.print_helper import _format_size
_format_size = _format_size if args.flops_str else lambda x: x
with torch.no_grad():
if hasattr(model, 'extract_feat'):
model.forward = model.extract_feat
model.to('cpu')
inputs = (torch.randn((1, 3, *resolution)), )
flops = _format_size(FlopCountAnalysis(model, inputs).total())
params = _format_size(parameter_count(model)[''])
result['flops'] = flops if args.flops_str else int(flops)
result['params'] = params if args.flops_str else int(params)
else:
result['flops'] = ''
result['params'] = ''
model.forward = model.extract_feat
model.to('cpu')
inputs = (torch.randn((1, 3, *resolution)), )
analyzer = FlopAnalyzer(model, inputs)
# extract_feat only includes backbone
analyzer._enable_warn_uncalled_mods = False
flops = _format_size(analyzer.total())
params = _format_size(parameter_count(model)[''])
result['flops'] = flops if args.flops_str else int(flops)
result['params'] = params if args.flops_str else int(params)
return result
@ -156,7 +159,7 @@ def show_summary(summary_data, args):
table = Table(title='Validation Benchmark Regression Summary')
table.add_column('Model')
table.add_column('Validation')
table.add_column('Resolution (h, w)')
table.add_column('Resolution (h w)')
if args.inference_time:
table.add_column('Inference Time (std) (ms/im)')
if args.flops:
@ -179,82 +182,49 @@ def show_summary(summary_data, args):
row.append(str(summary['params']))
table.add_row(*row)
console.print(table)
# Sample test whether the inference code is correct
def main(args):
register_all_modules()
model_index_file = MMCLS_ROOT / 'model-index.yml'
model_index = load(str(model_index_file))
model_index.build_models_with_collections()
models = OrderedDict({model.name: model for model in model_index.models})
logger = MMLogger(
'validation',
logger_name='validation',
log_file='benchmark_test_image.log',
log_level=logging.INFO)
if args.models:
patterns = [re.compile(pattern) for pattern in args.models]
filter_models = {}
for k, v in models.items():
if any([re.match(pattern, k) for pattern in patterns]):
filter_models[k] = v
if len(filter_models) == 0:
models = set()
for pattern in args.models:
models.update(list_models(pattern=pattern))
if len(models) == 0:
print('No model found, please specify models in:')
print('\n'.join(models.keys()))
print('\n'.join(list_models()))
return
models = filter_models
else:
models = list_models()
summary_data = {}
tmpdir = tempfile.TemporaryDirectory()
for model_name, model_info in models.items():
for model_name in models:
model_info = ModelHub.get(model_name)
if model_info.config is None:
continue
config = Path(model_info.config)
assert config.exists(), f'{model_name}: {config} not found.'
logger.info(f'Processing: {model_name}')
http_prefix = 'https://download.openmmlab.com/mmclassification/'
if args.checkpoint_root is not None:
root = args.checkpoint_root
if 's3://' in args.checkpoint_root:
from petrel_client.common.exception import AccessDeniedError
file_client = FileClient.infer_client(uri=root)
checkpoint = file_client.join_path(
root, model_info.weights[len(http_prefix):])
try:
exists = file_client.exists(checkpoint)
except AccessDeniedError:
exists = False
else:
checkpoint = Path(root) / model_info.weights[len(http_prefix):]
exists = checkpoint.exists()
if exists:
checkpoint = str(checkpoint)
else:
print(f'WARNING: {model_name}: {checkpoint} not found.')
checkpoint = None
weights = model_info.weights
if args.checkpoint_root is not None and weights is not None:
checkpoint = substitute_weights(weights, args.checkpoint_root)
else:
checkpoint = None
try:
# build the model from a config file and a checkpoint file
result = inference(MMCLS_ROOT / config, checkpoint, tmpdir.name,
args, model_name)
result = inference(model_info, checkpoint, tmpdir.name, args)
result['valid'] = 'PASS'
except Exception as e:
if 'CUDA out of memory' in str(e):
logger.error(f'"{config}" :\nCUDA out of memory')
logger.error(f'"{model_name}" :\nCUDA out of memory')
result = {'valid': 'CUDA OOM'}
else:
import traceback
logger.error(f'"{config}" :\n{traceback.format_exc()}')
logger.error(f'"{model_name}" :\n{traceback.format_exc()}')
result = {'valid': 'FAIL'}
summary_data[model_name] = result

View File

@ -1,9 +1,10 @@
import argparse
import fnmatch
import logging
import os
import os.path as osp
import pickle
import re
from collections import OrderedDict
from collections import OrderedDict, defaultdict
from datetime import datetime
from pathlib import Path
@ -11,57 +12,57 @@ from modelindex.load_model_index import load
from rich.console import Console
from rich.syntax import Syntax
from rich.table import Table
from utils import METRICS_MAP, MMCLS_ROOT, substitute_weights
# Avoid to import MMPretrain to accelerate speed to show summary
console = Console()
MMCLS_ROOT = Path(__file__).absolute().parents[2]
METRICS_MAP = {
'Top 1 Accuracy': 'accuracy/top1',
'Top 5 Accuracy': 'accuracy/top5'
}
logger = logging.getLogger('test')
logger.addHandler(logging.StreamHandler())
logger.addHandler(logging.FileHandler('benchmark_test.log', mode='w'))
def parse_args():
parser = argparse.ArgumentParser(
description="Test all models' accuracy in model-index.yml")
parser.add_argument(
'partition', type=str, help='Cluster partition to use.')
parser.add_argument('checkpoint_root', help='Checkpoint file root path.')
parser.add_argument(
'--job-name',
type=str,
default='cls-test-benchmark',
help='Slurm job name prefix')
parser.add_argument('--port', type=int, default=29666, help='dist port')
'--local', action='store_true', help='run at local instead of slurm.')
parser.add_argument(
'--models', nargs='+', type=str, help='Specify model names to run.')
parser.add_argument(
'--work-dir',
default='work_dirs/benchmark_test',
help='the dir to save metric')
parser.add_argument(
'--run', action='store_true', help='run script directly')
parser.add_argument(
'--local',
action='store_true',
help='run at local instead of cluster.')
parser.add_argument(
'--mail', type=str, help='Mail address to watch test status.')
parser.add_argument(
'--mail-type',
nargs='+',
default=['BEGIN'],
choices=['NONE', 'BEGIN', 'END', 'FAIL', 'REQUEUE', 'ALL'],
help='Mail address to watch test status.')
parser.add_argument(
'--quotatype',
default=None,
choices=['reserved', 'auto', 'spot'],
help='Quota type, only available for phoenix-slurm>=0.2')
parser.add_argument(
'--summary',
action='store_true',
help='Summarize benchmark test results.')
parser.add_argument('--save', action='store_true', help='Save the summary')
parser.add_argument(
'--gpus', type=int, default=1, help='How many GPUS to use.')
parser.add_argument(
'--no-skip',
action='store_true',
help='Whether to skip models without results record in the metafile.')
parser.add_argument(
'--work-dir',
default='work_dirs/benchmark_test',
help='the dir to save metric')
parser.add_argument('--port', type=int, default=29666, help='dist port')
parser.add_argument(
'--partition',
type=str,
default='mm_model',
help='(for slurm) Cluster partition to use.')
parser.add_argument(
'--job-name',
type=str,
default='cls-test-benchmark',
help='(for slurm) Slurm job name prefix')
parser.add_argument(
'--quotatype',
default=None,
choices=['reserved', 'auto', 'spot'],
help='(for slurm) Quota type, only available for phoenix-slurm>=0.2')
parser.add_argument(
'--cfg-options',
nargs='+',
@ -74,64 +75,53 @@ def parse_args():
def create_test_job_batch(commands, model_info, args, port, script_name):
fname = model_info.name
model_name = model_info.name
config = Path(model_info.config)
assert config.exists(), f'{fname}: {config} not found.'
http_prefix = 'https://download.openmmlab.com/mmclassification/'
if 's3://' in args.checkpoint_root:
from mmengine.fileio import FileClient
from petrel_client.common.exception import AccessDeniedError
file_client = FileClient.infer_client(uri=args.checkpoint_root)
checkpoint = file_client.join_path(
args.checkpoint_root, model_info.weights[len(http_prefix):])
try:
exists = file_client.exists(checkpoint)
except AccessDeniedError:
exists = False
if model_info.weights is not None:
checkpoint = substitute_weights(model_info.weights,
args.checkpoint_root)
if checkpoint is None:
logger.warning(f'{model_name}: {checkpoint} not found.')
return None
else:
checkpoint_root = Path(args.checkpoint_root)
checkpoint = checkpoint_root / model_info.weights[len(http_prefix):]
exists = checkpoint.exists()
if not exists:
print(f'WARNING: {fname}: {checkpoint} not found.')
return None
job_name = f'{args.job_name}_{fname}'
work_dir = Path(args.work_dir) / fname
job_name = f'{args.job_name}_{model_name}'
work_dir = Path(args.work_dir) / model_name
work_dir.mkdir(parents=True, exist_ok=True)
result_file = work_dir / 'result.pkl'
if args.mail is not None and 'NONE' not in args.mail_type:
mail_cfg = (f'#SBATCH --mail {args.mail}\n'
f'#SBATCH --mail-type {args.mail_type}\n')
else:
mail_cfg = ''
if args.quotatype is not None:
quota_cfg = f'#SBATCH --quotatype {args.quotatype}\n'
quota_cfg = f'#SBATCH --quotatype {args.quotatype}'
else:
quota_cfg = ''
launcher = 'none' if args.local else 'slurm'
runner = 'python' if args.local else 'srun python'
if not args.local:
launcher = 'srun python'
runner = 'slurm'
elif args.gpus > 1:
launcher = 'pytorch'
runner = ('torchrun --master_addr="127.0.0.1" '
f'--master_port={port} --nproc_per_node={args.gpus}')
else:
launcher = 'none'
runner = 'python -u'
job_script = (f'#!/bin/bash\n'
f'#SBATCH --output {work_dir}/job.%j.out\n'
f'#SBATCH --partition={args.partition}\n'
f'#SBATCH --job-name {job_name}\n'
f'#SBATCH --gres=gpu:8\n'
f'{mail_cfg}{quota_cfg}'
f'#SBATCH --ntasks-per-node=8\n'
f'#SBATCH --ntasks=8\n'
f'#SBATCH --gres=gpu:{min(8, args.gpus)}\n'
f'{quota_cfg}\n'
f'#SBATCH --ntasks-per-node={min(8, args.gpus)}\n'
f'#SBATCH --ntasks={args.gpus}\n'
f'#SBATCH --cpus-per-task=5\n\n'
f'{runner} -u {script_name} {config} {checkpoint} '
f'--work-dir={work_dir} '
f'--out={result_file} '
f'--cfg-option dist_params.port={port} '
f'{runner} {script_name} {config} {checkpoint} '
f'--work-dir={work_dir} --cfg-option '
f'env_cfg.dist_cfg.port={port} '
f'{" ".join(args.cfg_options)} '
f'--out={result_file} --out-item="metrics" '
f'--launcher={launcher}\n')
with open(work_dir / 'job.sh', 'w') as f:
@ -146,33 +136,17 @@ def create_test_job_batch(commands, model_info, args, port, script_name):
return work_dir / 'job.sh'
def test(args):
# parse model-index.yml
model_index_file = MMCLS_ROOT / 'model-index.yml'
model_index = load(str(model_index_file))
model_index.build_models_with_collections()
models = OrderedDict({model.name: model for model in model_index.models})
def test(models, args):
script_name = osp.join('tools', 'test.py')
port = args.port
commands = []
if args.models:
patterns = [re.compile(pattern) for pattern in args.models]
filter_models = {}
for k, v in models.items():
if any([re.match(pattern, k) for pattern in patterns]):
filter_models[k] = v
if len(filter_models) == 0:
print('No model found, please specify models in:')
print('\n'.join(models.keys()))
return
models = filter_models
preview_script = ''
for model_info in models.values():
if model_info.results is None:
# Skip pre-train model
continue
script_path = create_test_job_batch(commands, model_info, args, port,
@ -205,44 +179,41 @@ def test(args):
console.print('Please set "--run" to start the job')
def save_summary(summary_data, models_map, work_dir):
summary_path = work_dir / 'test_benchmark_summary.md'
def save_summary(summary_data, work_dir):
summary_path = work_dir / 'test_benchmark_summary.csv'
file = open(summary_path, 'w')
headers = [
'Model', 'Top-1 Expected(%)', 'Top-1 (%)', 'Top-5 Expected (%)',
'Top-5 (%)', 'Config'
]
file.write('# Test Benchmark Regression Summary\n')
file.write('| ' + ' | '.join(headers) + ' |\n')
file.write('|:' + ':|:'.join(['---'] * len(headers)) + ':|\n')
columns = defaultdict(list)
for model_name, summary in summary_data.items():
if len(summary) == 0:
# Skip models without results
continue
row = [model_name]
if 'Top 1 Accuracy' in summary:
metric = summary['Top 1 Accuracy']
row.append(str(round(metric['expect'], 2)))
row.append(str(round(metric['result'], 2)))
else:
row.extend([''] * 2)
if 'Top 5 Accuracy' in summary:
metric = summary['Top 5 Accuracy']
row.append(str(round(metric['expect'], 2)))
row.append(str(round(metric['result'], 2)))
else:
row.extend([''] * 2)
columns['Name'].append(model_name)
model_info = models_map[model_name]
row.append(model_info.config)
file.write('| ' + ' | '.join(row) + ' |\n')
for metric_key in METRICS_MAP:
if metric_key in summary:
metric = summary[metric_key]
expect = round(metric['expect'], 2)
result = round(metric['result'], 2)
columns[f'{metric_key} (expect)'].append(str(expect))
columns[f'{metric_key}'].append(str(result))
else:
columns[f'{metric_key} (expect)'].append('')
columns[f'{metric_key}'].append('')
columns = {
field: column
for field, column in columns.items() if ''.join(column)
}
file.write(','.join(columns.keys()) + '\n')
for row in zip(*columns.values()):
file.write(','.join(row) + '\n')
file.close()
print('Summary file saved at ' + str(summary_path))
logger.info('Summary file saved at ' + str(summary_path))
def show_summary(summary_data):
table = Table(title='Test Benchmark Regression Summary')
table.add_column('Model')
table.add_column('Name')
for metric in METRICS_MAP:
table.add_column(f'{metric} (expect)')
table.add_column(f'{metric}')
@ -274,33 +245,20 @@ def show_summary(summary_data):
row.append('')
table.add_row(*row)
# Remove empty columns
table.columns = [
column for column in table.columns if ''.join(column._cells)
]
console.print(table)
def summary(args):
model_index_file = MMCLS_ROOT / 'model-index.yml'
model_index = load(str(model_index_file))
model_index.build_models_with_collections()
models = OrderedDict({model.name: model for model in model_index.models})
def summary(models, args):
work_dir = Path(args.work_dir)
if args.models:
patterns = [re.compile(pattern) for pattern in args.models]
filter_models = {}
for k, v in models.items():
if any([re.match(pattern, k) for pattern in patterns]):
filter_models[k] = v
if len(filter_models) == 0:
print('No model found, please specify models in:')
print('\n'.join(models.keys()))
return
models = filter_models
summary_data = {}
for model_name, model_info in models.items():
if model_info.results is None:
if model_info.results is None and not args.no_skip:
continue
# Skip if not found result file.
@ -327,16 +285,35 @@ def summary(args):
show_summary(summary_data)
if args.save:
save_summary(summary_data, models, work_dir)
save_summary(summary_data, work_dir)
def main():
args = parse_args()
# parse model-index.yml
model_index_file = MMCLS_ROOT / 'model-index.yml'
model_index = load(str(model_index_file))
model_index.build_models_with_collections()
models = OrderedDict({model.name: model for model in model_index.models})
if args.models:
filter_models = {}
for pattern in args.models:
filter_models.update({
name: models[name]
for name in fnmatch.filter(models, pattern + '*')
})
if len(filter_models) == 0:
logger.error('No model found, please specify models in:\n' +
'\n'.join(models.keys()))
return
models = filter_models
if args.summary:
summary(args)
summary(models, args)
else:
test(args)
test(models, args)
if __name__ == '__main__':

View File

@ -1,9 +1,12 @@
import argparse
import fnmatch
import json
import logging
import os
import os.path as osp
import re
from collections import OrderedDict
from collections import defaultdict
from copy import deepcopy
from datetime import datetime
from pathlib import Path
from zipfile import ZipFile
@ -13,19 +16,20 @@ from modelindex.load_model_index import load
from rich.console import Console
from rich.syntax import Syntax
from rich.table import Table
from utils import METRICS_MAP, MMCLS_ROOT
# Avoid to import MMPretrain to accelerate speed to show summary
console = Console()
MMCLS_ROOT = Path(__file__).absolute().parents[2]
logger = logging.getLogger('train')
logger.addHandler(logging.StreamHandler())
logger.addHandler(logging.FileHandler('benchmark_train.log', mode='w'))
CYCLE_LEVELS = ['month', 'quarter', 'half-year', 'no-training']
METRICS_MAP = {
'Top 1 Accuracy': 'accuracy/top1',
'Top 5 Accuracy': 'accuracy/top5'
}
class RangeAction(argparse.Action):
def __call__(self, parser, namespace, values: str, option_string):
def __call__(self, _, namespace, values: str, __):
matches = re.match(r'([><=]*)([-\w]+)', values)
if matches is None:
raise ValueError(f'Unavailable range option {values}')
@ -49,15 +53,25 @@ def parse_args():
parser = argparse.ArgumentParser(
description='Train models (in bench_train.yml) and compare accuracy.')
parser.add_argument(
'partition', type=str, help='Cluster partition to use.')
parser.add_argument(
'--job-name',
type=str,
default='cls-train-benchmark',
help='Slurm job name prefix')
parser.add_argument('--port', type=int, default=29666, help='dist port')
'--local',
action='store_true',
help='run at local instead of cluster.')
parser.add_argument(
'--models', nargs='+', type=str, help='Specify model names to run.')
parser.add_argument(
'--run', action='store_true', help='run script directly')
parser.add_argument(
'--summary',
action='store_true',
help='Summarize benchmark train results.')
parser.add_argument(
'--save',
action='store_true',
help='Save the summary and archive log files.')
parser.add_argument(
'--non-distributed',
action='store_true',
help='Use non-distributed environment (for debug).')
parser.add_argument(
'--range',
type=str,
@ -70,33 +84,22 @@ def parse_args():
'--work-dir',
default='work_dirs/benchmark_train',
help='the dir to save train log')
parser.add_argument('--port', type=int, default=29666, help='dist port')
parser.add_argument(
'--run', action='store_true', help='run script directly')
'--partition',
type=str,
default='mm_model',
help='(for slurm) Cluster partition to use.')
parser.add_argument(
'--local',
action='store_true',
help='run at local instead of cluster.')
parser.add_argument(
'--mail', type=str, help='Mail address to watch train status.')
parser.add_argument(
'--mail-type',
nargs='+',
default=['BEGIN', 'END', 'FAIL'],
choices=['NONE', 'BEGIN', 'END', 'FAIL', 'REQUEUE', 'ALL'],
help='Mail address to watch train status.')
'--job-name',
type=str,
default='cls-train-benchmark',
help='(for slurm) Slurm job name prefix')
parser.add_argument(
'--quotatype',
default=None,
choices=['reserved', 'auto', 'spot'],
help='Quota type, only available for phoenix-slurm>=0.2')
parser.add_argument(
'--summary',
action='store_true',
help='Summarize benchmark train results.')
parser.add_argument(
'--save',
action='store_true',
help='Save the summary and archive log files.')
help='(for slurm) Quota type, only available for phoenix-slurm>=0.2')
parser.add_argument(
'--cfg-options',
nargs='+',
@ -118,72 +121,90 @@ def get_gpu_number(model_info):
return gpus
def create_train_job_batch(commands, model_info, args, port, script_name):
fname = model_info.name
gpus = get_gpu_number(model_info)
gpus_per_node = min(gpus, 8)
def create_train_job_batch(model_info, args, port, pretrain_info=None):
model_name = model_info.name
config = Path(model_info.config)
assert config.exists(), f'"{fname}": {config} not found.'
gpus = get_gpu_number(model_info)
job_name = f'{args.job_name}_{fname}'
work_dir = Path(args.work_dir) / fname
job_name = f'{args.job_name}_{model_name}'
work_dir = Path(args.work_dir) / model_name
work_dir.mkdir(parents=True, exist_ok=True)
if args.mail is not None and 'NONE' not in args.mail_type:
mail_cfg = (f'#SBATCH --mail {args.mail}\n'
f'#SBATCH --mail-type {args.mail_type}\n')
else:
mail_cfg = ''
cfg_options = deepcopy(args.cfg_options)
if args.quotatype is not None:
quota_cfg = f'#SBATCH --quotatype {args.quotatype}\n'
quota_cfg = f'#SBATCH --quotatype {args.quotatype}'
else:
quota_cfg = ''
launcher = 'none' if args.local else 'slurm'
runner = 'python' if args.local else 'srun python'
if pretrain_info is not None:
pretrain = Path(args.work_dir) / pretrain_info.name / 'last_checkpoint'
pretrain_cfg = (f'model.backbone.init_cfg.checkpoint="$(<{pretrain})" '
'model.backbone.init_cfg.type="Pretrained" '
'model.backbone.init_cfg.prefix="backbone."')
else:
pretrain_cfg = ''
if not args.local:
launcher = 'slurm'
runner = 'srun python'
elif not args.non_distributed:
launcher = 'pytorch'
if gpus > 8:
gpus = 8
cfg_options.append('auto_scale_lr.enable=True')
runner = ('torchrun --master_addr="127.0.0.1" '
f'--master_port={port} --nproc_per_node={gpus}')
else:
launcher = 'none'
runner = 'python -u'
job_script = (f'#!/bin/bash\n'
f'#SBATCH --output {work_dir}/job.%j.out\n'
f'#SBATCH --partition={args.partition}\n'
f'#SBATCH --job-name {job_name}\n'
f'#SBATCH --gres=gpu:{gpus_per_node}\n'
f'{mail_cfg}{quota_cfg}'
f'#SBATCH --ntasks-per-node={gpus_per_node}\n'
f'#SBATCH --gres=gpu:{min(8, gpus)}\n'
f'{quota_cfg}\n'
f'#SBATCH --ntasks-per-node={min(8, gpus)}\n'
f'#SBATCH --ntasks={gpus}\n'
f'#SBATCH --cpus-per-task=5\n\n'
f'{runner} -u {script_name} {config} '
f'{runner} tools/train.py {config} '
f'--work-dir={work_dir} --cfg-option '
f'env_cfg.dist_cfg.port={port} '
f'{" ".join(args.cfg_options)} '
f'{" ".join(cfg_options)} '
f'default_hooks.checkpoint.max_keep_ckpts=2 '
f'default_hooks.checkpoint.save_best="auto" '
f'{pretrain_cfg} '
f'--launcher={launcher}\n')
with open(work_dir / 'job.sh', 'w') as f:
f.write(job_script)
commands.append(f'echo "{config}"')
if args.local:
commands.append(f'bash {work_dir}/job.sh')
else:
commands.append(f'sbatch {work_dir}/job.sh')
return work_dir / 'job.sh'
def train(models, args):
script_name = osp.join('tools', 'train.py')
port = args.port
commands = []
for model_info in models.values():
script_path = create_train_job_batch(commands, model_info, args, port,
script_name)
script_path = create_train_job_batch(model_info, args, port)
if hasattr(model_info, 'downstream'):
downstream_info = model_info.downstream
downstream_script = create_train_job_batch(
downstream_info, args, port, pretrain_info=model_info)
else:
downstream_script = None
if args.local:
command = f'bash {script_path}'
if downstream_script:
command += f' && bash {downstream_script}'
else:
command = f'JOBID=$(sbatch --parsable {script_path})'
if downstream_script:
command += f' && sbatch --dependency=afterok:$JOBID {downstream_script}' # noqa: E501
commands.append(command)
port += 1
command_str = '\n'.join(commands)
@ -211,63 +232,67 @@ def train(models, args):
console.print('Please set "--run" to start the job')
def save_summary(summary_data, models_map, work_dir):
def save_summary(summary_data, work_dir):
date = datetime.now().strftime('%Y%m%d-%H%M%S')
zip_path = work_dir / f'archive-{date}.zip'
zip_file = ZipFile(zip_path, 'w')
summary_path = work_dir / 'benchmark_summary.md'
summary_path = work_dir / 'benchmark_summary.csv'
file = open(summary_path, 'w')
headers = [
'Model', 'Top-1 Expected(%)', 'Top-1 (%)', 'Top-1 best(%)',
'best epoch', 'Top-5 Expected (%)', 'Top-5 (%)', 'Config', 'Log'
]
file.write('# Train Benchmark Regression Summary\n')
file.write('| ' + ' | '.join(headers) + ' |\n')
file.write('|:' + ':|:'.join(['---'] * len(headers)) + ':|\n')
columns = defaultdict(list)
for model_name, summary in summary_data.items():
if len(summary) == 0:
# Skip models without results
continue
row = [model_name]
if 'Top 1 Accuracy' in summary:
metric = summary['Top 1 Accuracy']
row.append(f"{metric['expect']:.2f}")
row.append(f"{metric['last']:.2f}")
row.append(f"{metric['best']:.2f}")
row.append(f"{metric['best_epoch']:.2f}")
else:
row.extend([''] * 4)
if 'Top 5 Accuracy' in summary:
metric = summary['Top 5 Accuracy']
row.append(f"{metric['expect']:.2f}")
row.append(f"{metric['last']:.2f}")
else:
row.extend([''] * 2)
columns['Name'].append(model_name)
model_info = models_map[model_name]
row.append(model_info.config)
row.append(str(summary['log_file'].relative_to(work_dir)))
for metric_key in METRICS_MAP:
if metric_key in summary:
metric = summary[metric_key]
expect = str(round(metric['expect'], 2))
result = str(round(metric['result'], 2))
columns[f'{metric_key} (expect)'].append(expect)
columns[f'{metric_key}'].append(result)
best = str(round(metric['best'], 2))
best_epoch = str(int(metric['best_epoch']))
columns[f'{metric_key} (best)'].append(best)
columns[f'{metric_key} (best epoch)'].append(best_epoch)
else:
columns[f'{metric_key} (expect)'].append('')
columns[f'{metric_key}'].append('')
columns[f'{metric_key} (best)'].append('')
columns[f'{metric_key} (best epoch)'].append('')
columns['Log'].append(str(summary['log_file'].relative_to(work_dir)))
zip_file.write(summary['log_file'])
file.write('| ' + ' | '.join(row) + ' |\n')
columns = {
field: column
for field, column in columns.items() if ''.join(column)
}
file.write(','.join(columns.keys()) + '\n')
for row in zip(*columns.values()):
file.write(','.join(row) + '\n')
file.close()
zip_file.write(summary_path)
zip_file.close()
print('Summary file saved at ' + str(summary_path))
print('Log files archived at ' + str(zip_path))
logger.info('Summary file saved at ' + str(summary_path))
logger.info('Log files archived at ' + str(zip_path))
def show_summary(summary_data):
table = Table(title='Train Benchmark Regression Summary')
table.add_column('Model')
table.add_column('Name')
for metric in METRICS_MAP:
table.add_column(f'{metric} (expect)')
table.add_column(f'{metric}')
table.add_column(f'{metric} (best)')
table.add_column('Date')
def set_color(value, expect):
if value > expect:
return 'green'
elif value > expect - 0.2:
elif value >= expect - 0.2:
return 'white'
else:
return 'red'
@ -277,25 +302,30 @@ def show_summary(summary_data):
for metric_key in METRICS_MAP:
if metric_key in summary:
metric = summary[metric_key]
expect = metric['expect']
last = metric['last']
expect = round(metric['expect'], 2)
last = round(metric['last'], 2)
last_epoch = metric['last_epoch']
last_color = set_color(last, expect)
best = metric['best']
best_color = set_color(best, expect)
best_epoch = metric['best_epoch']
best_epoch = round(metric['best_epoch'], 2)
row.append(f'{expect:.2f}')
row.append(
f'[{last_color}]{last:.2f}[/{last_color}] ({last_epoch})')
row.append(
f'[{best_color}]{best:.2f}[/{best_color}] ({best_epoch})')
else:
row.extend([''] * 3)
table.add_row(*row)
# Remove empty columns
table.columns = [
column for column in table.columns if ''.join(column._cells)
]
console.print(table)
def summary(models, args):
work_dir = Path(args.work_dir)
dir_map = {p.name: p for p in work_dir.iterdir() if p.is_dir()}
@ -306,9 +336,17 @@ def summary(models, args):
if model_name not in dir_map:
continue
elif hasattr(model_info, 'downstream'):
downstream_name = model_info.downstream.name
if downstream_name not in dir_map:
continue
else:
sub_dir = dir_map[downstream_name]
model_info = model_info.downstream
else:
# Skip if not found any vis_data folder.
sub_dir = dir_map[model_name]
# Skip if not found any vis_data folder.
sub_dir = dir_map[model_name]
log_files = [f for f in sub_dir.glob('*/vis_data/scalars.json')]
if len(log_files) == 0:
continue
@ -317,11 +355,8 @@ def summary(models, args):
# parse train log
with open(log_file) as f:
json_logs = [json.loads(s) for s in f.readlines()]
val_logs = [
log for log in json_logs
# TODO: need a better method to extract validate log
if 'loss' not in log and 'accuracy/top1' in log
]
# TODO: need a better method to extract validate log
val_logs = [log for log in json_logs if 'loss' not in log]
if len(val_logs) == 0:
continue
@ -351,12 +386,13 @@ def summary(models, args):
show_summary(summary_data)
if args.save:
save_summary(summary_data, models, work_dir)
save_summary(summary_data, work_dir)
def main():
args = parse_args()
# parse model-index.yml
model_index_file = MMCLS_ROOT / 'model-index.yml'
model_index = load(str(model_index_file))
model_index.build_models_with_collections()
@ -364,25 +400,28 @@ def main():
with open(Path(__file__).parent / 'bench_train.yml', 'r') as f:
train_items = yaml.safe_load(f)
models = OrderedDict()
models = {}
for item in train_items:
name = item['Name']
model_info = all_models[name]
model_info.cycle = item.get('Cycle', None)
cycle = getattr(model_info, 'cycle', 'month')
cycle = item['Cycle']
cycle_level = CYCLE_LEVELS.index(cycle)
if cycle_level in args.range:
model_info = all_models[name]
if 'Downstream' in item:
downstream = item['Downstream']
setattr(model_info, 'downstream', all_models[downstream])
models[name] = model_info
if args.models:
patterns = [re.compile(pattern) for pattern in args.models]
filter_models = {}
for k, v in models.items():
if any([re.match(pattern, k) for pattern in patterns]):
filter_models[k] = v
for pattern in args.models:
filter_models.update({
name: models[name]
for name in fnmatch.filter(models, pattern + '*')
})
if len(filter_models) == 0:
print('No model found, please specify models in:')
print('\n'.join(models.keys()))
logger.error('No model found, please specify models in:\n' +
'\n'.join(models.keys()))
return
models = filter_models

View File

@ -10,7 +10,7 @@
- Name: swin-small_16xb64_in1k
Cycle: month
- Name: vit-base-p16_pt-32xb128-mae_in1k
- Name: vit-base-p16_32xb128-mae_in1k
Cycle: month
- Name: resnet50_8xb256-rsb-a1-600e_in1k
@ -34,53 +34,85 @@
- Name: regnetx-1.6gf_8xb128_in1k
Cycle: half-year
- Name: van-small_8xb128_in1k
Cycle: no-training
- Name: conformer-small-p32_8xb128_in1k
Cycle: half-year
- Name: res2net50-w14-s8_3rdparty_8xb32_in1k
Cycle: no-training
- Name: convnext-small_32xb128_in1k
Cycle: month
- Name: repvgg-A2_3rdparty_4xb64-coslr-120e_in1k
Cycle: no-training
- Name: mobilenet-v3-small_8xb128_in1k
Cycle: half-year
- Name: tnt-small-p16_3rdparty_in1k
Cycle: no-training
- Name: mobileone-s2_8xb32_in1k
Cycle: quarter
- Name: mlp-mixer-base-p16_3rdparty_64xb64_in1k
Cycle: no-training
- Name: repvgg-b2g4_8xb32_in1k
Cycle: half-year
- Name: conformer-small-p16_3rdparty_8xb128_in1k
Cycle: no-training
- Name: barlowtwins_resnet50_8xb256-coslr-300e_in1k
Cycle: half-year
Downstream: resnet50_barlowtwins-pre_8xb32-linear-coslr-100e_in1k
- Name: twins-pcpvt-base_3rdparty_8xb128_in1k
Cycle: no-training
- Name: beit_beit-base-p16_8xb256-amp-coslr-300e_in1k
Cycle: quarter
Downstream: beit-base-p16_beit-pre_8xb128-coslr-100e_in1k
- Name: efficientnet-b0_3rdparty_8xb32_in1k
Cycle: no-training
- Name: beitv2_beit-base-p16_8xb256-amp-coslr-300e_in1k
Cycle: quarter
Downstream: beit-base-p16_beitv2-pre_8xb128-coslr-100e_in1k
- Name: convnext-small_3rdparty_32xb128_in1k
Cycle: no-training
- Name: byol_resnet50_16xb256-coslr-200e_in1k
Cycle: quarter
Downstream: resnet50_byol-pre_8xb512-linear-coslr-90e_in1k
- Name: hrnet-w18_3rdparty_8xb32_in1k
Cycle: no-training
- Name: cae_beit-base-p16_8xb256-amp-coslr-300e_in1k
Cycle: half-year
Downstream: beit-base-p16_cae-pre_8xb128-coslr-100e_in1k
- Name: repmlp-base_3rdparty_8xb64_in1k
Cycle: no-training
- Name: densecl_resnet50_8xb32-coslr-200e_in1k
Cycle: half-year
Downstream: resnet50_densecl-pre_8xb32-linear-steplr-100e_in1k
- Name: wide-resnet50_3rdparty_8xb32_in1k
Cycle: no-training
- Name: eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k
Cycle: half-year
Downstream: vit-base-p16_eva-mae-style-pre_8xb2048-linear-coslr-100e_in1k
- Name: cspresnet50_3rdparty_8xb32_in1k
Cycle: no-training
- Name: mae_vit-base-p16_8xb512-amp-coslr-300e_in1k
Cycle: month
Downstream: vit-base-p16_mae-300e-pre_8xb2048-linear-coslr-90e_in1k
- Name: convmixer-768-32_10xb64_in1k
Cycle: no-training
- Name: maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k
Cycle: quarter
Downstream: vit-base-p16_maskfeat-pre_8xb256-coslr-100e_in1k
- Name: densenet169_4xb256_in1k
Cycle: no-training
- Name: milan_vit-base-p16_16xb256-amp-coslr-400e_in1k
Cycle: quarter
Downstream: vit-base-p16_milan-pre_8xb2048-linear-coslr-100e_in1k
- Name: poolformer-s24_3rdparty_32xb128_in1k
Cycle: no-training
- Name: mixmim_mixmim-base_16xb128-coslr-300e_in1k
Cycle: half-year
Downstream: mixmim-base_mixmim-pre_8xb128-coslr-100e_in1k
- Name: inception-v3_3rdparty_8xb32_in1k
Cycle: no-training
- Name: mocov2_resnet50_8xb32-coslr-200e_in1k
Cycle: quarter
Downstream: resnet50_mocov2-pre_8xb32-linear-steplr-100e_in1k
- Name: mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k
Cycle: month
Downstream: vit-small-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
- Name: simclr_resnet50_16xb256-coslr-200e_in1k
Cycle: quarter
Downstream: resnet50_simclr-200e-pre_8xb512-linear-coslr-90e_in1k
- Name: simmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px
Cycle: month
Downstream: swin-base-w6_simmim-100e-pre_8xb256-coslr-100e_in1k-192px
- Name: simsiam_resnet50_8xb32-coslr-100e_in1k
Cycle: quarter
Downstream: resnet50_simsiam-100e-pre_8xb512-linear-coslr-90e_in1k
- Name: swav_resnet50_8xb32-mcrop-coslr-200e_in1k-224px-96px
Cycle: half-year
Downstream: resnet50_swav-pre_8xb32-linear-coslr-100e_in1k

View File

@ -0,0 +1,30 @@
from pathlib import Path
HTTP_PREFIX = 'https://download.openmmlab.com/'
MMCLS_ROOT = Path(__file__).absolute().parents[2]
METRICS_MAP = {
'Top 1 Accuracy': 'accuracy/top1',
'Top 5 Accuracy': 'accuracy/top5',
'Recall@1': 'retrieval/Recall@1',
}
def substitute_weights(download_link, root):
if 's3://' in root:
from mmengine.fileio.backends import PetrelBackend
from petrel_client.common.exception import AccessDeniedError
file_backend = PetrelBackend()
checkpoint = file_backend.join_path(root,
download_link[len(HTTP_PREFIX):])
try:
exists = file_backend.exists(checkpoint)
except AccessDeniedError:
exists = False
else:
checkpoint = Path(root) / download_link[len(HTTP_PREFIX):]
exists = checkpoint.exists()
if exists:
return str(checkpoint)
else:
return None

View File

@ -69,10 +69,17 @@ def parse_args():
parser = argparse.ArgumentParser(description=prog_description)
parser.add_argument('--src', type=Path, help='The path of the matafile.')
parser.add_argument('--out', '-o', type=Path, help='The output path.')
parser.add_argument(
'--inplace',
'-i',
action='store_true',
help='Modify the source metafile inplace.')
parser.add_argument(
'--view', action='store_true', help='Only pretty print the metafile.')
parser.add_argument('--csv', type=str, help='Use a csv to update models.')
args = parser.parse_args()
if args.inplace:
args.out = args.src
return args
@ -82,6 +89,7 @@ def get_flops(config_path):
from fvcore.nn import FlopCountAnalysis, parameter_count
from mmengine.config import Config
from mmengine.dataset import Compose
from mmengine.model.utils import revert_sync_batchnorm
from mmengine.registry import DefaultScope
import mmpretrain.datasets # noqa: F401
@ -109,6 +117,8 @@ def get_flops(config_path):
resolution = (224, 224)
model = init_model(cfg, device='cpu')
model = revert_sync_batchnorm(model)
model.eval()
with torch.no_grad():
model.forward = model.extract_feat
@ -265,8 +275,9 @@ def fill_model_by_prompt(model: dict, defaults: dict):
if model.get('Converted From') is None and model.get(
'Weights') is not None:
if Confirm.ask(
'Is the checkpoint is converted from [red]other repository[/]?'
):
'Is the checkpoint is converted '
'from [red]other repository[/]?',
default=False):
converted_from = {}
converted_from['Weights'] = prompt(
'Please fill the original checkpoint download link: ')
@ -280,7 +291,7 @@ def fill_model_by_prompt(model: dict, defaults: dict):
order = [
'Name', 'Metadata', 'In Collection', 'Results', 'Weights', 'Config',
'Converted From'
'Converted From', 'Downstream'
]
model = {k: model[k] for k in sorted(model.keys(), key=order.index)}
return model
@ -315,8 +326,8 @@ def update_model_by_dict(model: dict, update_dict: dict, defaults: dict):
model['Metadata']['Parameters'] = params
# Metadata.Training Data
if 'metadata.training data' in update_dict:
train_data = update_dict['metadata.training data'].strip()
if 'training dataset' in update_dict:
train_data = update_dict['training dataset'].strip()
train_data = re.split(r'\s+', train_data)
if len(train_data) > 1:
model['Metadata']['Training Data'] = train_data
@ -324,8 +335,8 @@ def update_model_by_dict(model: dict, update_dict: dict, defaults: dict):
model['Metadata']['Training Data'] = train_data[0]
# Results.Dataset
if 'results.dataset' in update_dict:
test_data = update_dict['results.dataset'].strip()
if 'test dataset' in update_dict:
test_data = update_dict['test dataset'].strip()
results = model.get('Results') or [{}]
result = results[0]
result['Dataset'] = test_data
@ -333,8 +344,8 @@ def update_model_by_dict(model: dict, update_dict: dict, defaults: dict):
# Results.Metrics.Top 1 Accuracy
result = None
if 'results.metrics.top 1 accuracy' in update_dict:
top1 = update_dict['results.metrics.top 1 accuracy']
if 'top-1' in update_dict:
top1 = update_dict['top-1']
results = model.get('Results') or [{}]
result = results[0]
result.setdefault('Metrics', {})
@ -343,8 +354,8 @@ def update_model_by_dict(model: dict, update_dict: dict, defaults: dict):
model['Results'] = results
# Results.Metrics.Top 5 Accuracy
if 'results.metrics.top 5 accuracy' in update_dict:
top5 = update_dict['results.metrics.top 5 accuracy']
if 'top-5' in update_dict:
top5 = update_dict['top-5']
results = model.get('Results') or [{}]
result = results[0]
result.setdefault('Metrics', {})
@ -374,7 +385,7 @@ def update_model_by_dict(model: dict, update_dict: dict, defaults: dict):
order = [
'Name', 'Metadata', 'In Collection', 'Results', 'Weights', 'Config',
'Converted From'
'Converted From', 'Downstream'
]
model = {k: model[k] for k in sorted(model.keys(), key=order.index)}
return model
@ -396,6 +407,17 @@ def format_model(model: dict):
title='Model')
def order_models(model):
order = []
order.append(int('Downstream' not in model))
order.append(int('3rdparty' in model['Name']))
order.append(model.get('Metadata', {}).get('Parameters', 0))
order.append(model.get('Metadata', {}).get('FLOPs', 0))
order.append(len(model['Name']))
return tuple(order)
def main():
args = parse_args()
@ -446,13 +468,12 @@ def main():
console.print(format_model(model))
updated_models.append(model)
while Confirm.ask('Add new model?'):
while Confirm.ask('Add new model?', default=False):
model = fill_model_by_prompt({}, model_defaults)
updated_models.append(model)
# Save updated models even error happened.
updated_models.sort(key=lambda item: (item.get('Metadata', {}).get(
'FLOPs', 0), len(item['Name'])))
updated_models.sort(key=order_models)
if args.out is not None:
with open(args.out, 'w') as f:
yaml_dump({'Collections': [collection]}, f)

View File

@ -2,7 +2,6 @@
import argparse
import re
import warnings
from collections import OrderedDict
from pathlib import Path
from modelindex.load_model_index import load
@ -108,6 +107,7 @@ def parse_args():
'--table', action='store_true', help='Only generate summary tables')
parser.add_argument(
'--update', type=str, help='Update the specified readme file.')
parser.add_argument('--out', type=str, help='Output to the file.')
parser.add_argument(
'--update-items',
type=str,
@ -431,7 +431,12 @@ def main():
if 'citation' not in content:
content['citation'] = '## Citation\n```bibtex\n```\n'
print(combine_readme(content))
content = combine_readme(content)
if args.out is not None:
with open(args.out, 'w') as f:
f.write(content)
else:
print(content)
if __name__ == '__main__':

View File

@ -65,13 +65,13 @@ python tools/test.py configs/barlowtwins/benchmarks/resnet50_8xb32-linear-coslr-
| Model | Params (M) | Flops (G) | Config | Download |
| :-------------------------------------------- | :--------: | :-------: | :------------------------------------------------------: | :------------------------------------------------------------------------------: |
| `barlowtwins_resnet50_8xb256-coslr-300e_in1k` | N/A | N/A | [config](barlowtwins_resnet50_8xb256-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k/barlowtwins_resnet50_8xb256-coslr-300e_in1k_20220825-57307488.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k/barlowtwins_resnet50_8xb256-coslr-300e_in1k_20220825-57307488.json) |
| `barlowtwins_resnet50_8xb256-coslr-300e_in1k` | 174.54 | 4.11 | [config](barlowtwins_resnet50_8xb256-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k/barlowtwins_resnet50_8xb256-coslr-300e_in1k_20220825-57307488.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k/barlowtwins_resnet50_8xb256-coslr-300e_in1k_20220825-57307488.json) |
### Image Classification on ImageNet-1k
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
| :---------------------------------------- | :------------------------------------------: | :--------: | :-------: | :-------: | :----------------------------------------: | :-------------------------------------------: |
| `resnet50_barlowtwins-pre_8xb32-linear-coslr-100e_in1k` | [BARLOWTWINS](https://download.openmmlab.com/mmselfsup/1.x/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k/barlowtwins_resnet50_8xb256-coslr-300e_in1k_20220825-57307488.pth) | N/A | N/A | 71.80 | [config](benchmarks/resnet50_8xb32-linear-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k/resnet50_linear-8xb32-coslr-100e_in1k/resnet50_linear-8xb32-coslr-100e_in1k_20220825-52fde35f.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k/resnet50_linear-8xb32-coslr-100e_in1k/resnet50_linear-8xb32-coslr-100e_in1k_20220825-52fde35f.json) |
| `resnet50_barlowtwins-pre_8xb32-linear-coslr-100e_in1k` | [BARLOWTWINS](https://download.openmmlab.com/mmselfsup/1.x/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k/barlowtwins_resnet50_8xb256-coslr-300e_in1k_20220825-57307488.pth) | 25.56 | 4.11 | 71.80 | [config](benchmarks/resnet50_8xb32-linear-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k/resnet50_linear-8xb32-coslr-100e_in1k/resnet50_linear-8xb32-coslr-100e_in1k_20220825-52fde35f.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k/resnet50_linear-8xb32-coslr-100e_in1k/resnet50_linear-8xb32-coslr-100e_in1k_20220825-52fde35f.json) |
## Citation

View File

@ -9,30 +9,36 @@ Collections:
- ResNet
- BarlowTwins
Paper:
URL: https://arxiv.org/abs/2103.03230
Title: "Barlow Twins: Self-Supervised Learning via Redundancy Reduction"
Title: 'Barlow Twins: Self-Supervised Learning via Redundancy Reduction'
URL: https://arxiv.org/abs/2103.03230
README: configs/barlowtwins/README.md
Models:
- Name: barlowtwins_resnet50_8xb256-coslr-300e_in1k
In Collection: BarlowTwins
Metadata:
Epochs: 300
Batch Size: 2048
FLOPs: 4109364224
Parameters: 174535744
Training Data: ImageNet-1k
In Collection: BarlowTwins
Results: null
Config: configs/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k/barlowtwins_resnet50_8xb256-coslr-300e_in1k_20220825-57307488.pth
Config: configs/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k.py
Downstream:
- resnet50_barlowtwins-pre_8xb32-linear-coslr-100e_in1k
- Name: resnet50_barlowtwins-pre_8xb32-linear-coslr-100e_in1k
In Collection: BarlowTwins
Metadata:
Epochs: 100
Batch Size: 256
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: BarlowTwins
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 71.8
Config: configs/barlowtwins/benchmarks/resnet50_8xb32-linear-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k/resnet50_linear-8xb32-coslr-100e_in1k/resnet50_linear-8xb32-coslr-100e_in1k_20220825-52fde35f.pth
Config: configs/barlowtwins/benchmarks/resnet50_8xb32-linear-coslr-100e_in1k.py

View File

@ -12,8 +12,8 @@ Collections:
- Scaled Dot-Product Attention
- Tanh Activation
Paper:
URL: https://arxiv.org/abs/2106.08254
Title: 'BEiT: BERT Pre-Training of Image Transformers'
URL: https://arxiv.org/abs/2106.08254
README: configs/beit/README.md
Code:
URL: https://github.com/open-mmlab/mmclassification/blob/dev-1.x/mmcls/models/backbones/beit.py
@ -21,39 +21,41 @@ Collections:
Models:
- Name: beit_beit-base-p16_8xb256-amp-coslr-300e_in1k
In Collection: BEiT
Metadata:
Epochs: 300
Batch Size: 2048
FLOPs: 17581219584
Parameters: 86530984
Training Data: ImageNet-1k
In Collection: BEiT
Results: null
Config: configs/beit/beit_beit-base-p16_8xb256-amp-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/beit/beit_vit-base-p16_8xb256-amp-coslr-300e_in1k/beit_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221128-ab79e626.pth
Config: configs/beit/beit_beit-base-p16_8xb256-amp-coslr-300e_in1k.py
Downstream:
- beit-base-p16_beit-pre_8xb128-coslr-100e_in1k
- Name: beit-base-p16_beit-pre_8xb128-coslr-100e_in1k
In Collection: BEiT
Metadata:
Epochs: 100
Batch Size: 1024
FLOPs: 17581219584
Parameters: 86530984
Training Data: ImageNet-1k
In Collection: BEiT
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.1
Config: configs/beit/benchmarks/beit-base-p16_8xb128-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/beit/beit_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221128-0ca393e9.pth
Config: configs/beit/benchmarks/beit-base-p16_8xb128-coslr-100e_in1k.py
- Name: beit-base-p16_beit-in21k-pre_3rdparty_in1k
In Collection: BEiT
Metadata:
FLOPs: 17581219584
Parameters: 86530984
Training Data:
- ImageNet-21k
- ImageNet-1k
In Collection: BEiT
Results:
- Dataset: ImageNet-1k
Task: Image Classification
@ -61,7 +63,7 @@ Models:
Top 1 Accuracy: 85.28
Top 5 Accuracy: 97.59
Weights: https://download.openmmlab.com/mmclassification/v0/beit/beit-base_3rdparty_in1k_20221114-c0a4df23.pth
Config: configs/beit/benchmarks/beit-base-p16_8xb64_in1k.py
Converted From:
Weights: https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth
Code: https://github.com/microsoft/unilm/tree/master/beit
Config: configs/beit/benchmarks/beit-base-p16_8xb64_in1k.py

View File

@ -65,13 +65,13 @@ python tools/test.py configs/beitv2/benchmarks/beit-base-p16_8xb128-coslr-100e_i
| Model | Params (M) | Flops (G) | Config | Download |
| :------------------------------------------------ | :--------: | :-------: | :----------------------------------------------------------: | :----------------------------------------------------------------------: |
| `beitv2_beit-base-p16_8xb256-amp-coslr-300e_in1k` | N/A | N/A | [config](beitv2_beit-base-p16_8xb256-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221212-a157be30.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221212-a157be30.json) |
| `beitv2_beit-base-p16_8xb256-amp-coslr-300e_in1k` | 192.81 | 17.58 | [config](beitv2_beit-base-p16_8xb256-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221212-a157be30.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221212-a157be30.json) |
### Image Classification on ImageNet-1k
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Top-5 (%) | Config | Download |
| :-------------------------------------- | :----------------------------------------: | :--------: | :-------: | :-------: | :-------: | :--------------------------------------: | :----------------------------------------: |
| `beit-base-p16_beitv2-pre_8xb128-coslr-100e_in1k` | [BEITV2](https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221212-a157be30.pth) | N/A | N/A | 85.00 | N/A | [config](benchmarks/beit-base-p16_8xb128-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221212-d1c0789e.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221212-d1c0789e.json) |
| `beit-base-p16_beitv2-pre_8xb128-coslr-100e_in1k` | [BEITV2](https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221212-a157be30.pth) | 86.53 | 17.58 | 85.00 | N/A | [config](benchmarks/beit-base-p16_8xb128-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221212-d1c0789e.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221212-d1c0789e.json) |
| `beit-base-p16_beitv2-in21k-pre_3rdparty_in1k`\* | BEITV2 ImageNet-21k | 86.53 | 17.58 | 86.47 | 97.99 | [config](benchmarks/beit-base-p16_8xb64_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/beit/beitv2-base_3rdparty_in1k_20221114-73e11905.pth) |
*Models with * are converted from the [official repo](https://github.com/microsoft/unilm/tree/master/beit2). The config files of these models are only for inference. We haven't reprodcue the training results.*

View File

@ -12,8 +12,8 @@ Collections:
- Scaled Dot-Product Attention
- Tanh Activation
Paper:
URL: https://arxiv.org/abs/2208.06366
Title: 'BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers'
URL: https://arxiv.org/abs/2208.06366
README: configs/beitv2/README.md
Code:
URL: https://github.com/open-mmlab/mmclassification/blob/dev-1.x/mmcls/models/backbones/beit.py
@ -21,35 +21,41 @@ Collections:
Models:
- Name: beitv2_beit-base-p16_8xb256-amp-coslr-300e_in1k
In Collection: BEiTv2
Metadata:
Epochs: 300
Batch Size: 2048
FLOPs: 17581223424
Parameters: 192811376
Training Data: ImageNet-1k
In Collection: BEiTv2
Results: null
Config: configs/beitv2/beitv2_beit-base-p16_8xb256-amp-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221212-a157be30.pth
Config: configs/beitv2/beitv2_beit-base-p16_8xb256-amp-coslr-300e_in1k.py
Downstream:
- beit-base-p16_beitv2-pre_8xb128-coslr-100e_in1k
- Name: beit-base-p16_beitv2-pre_8xb128-coslr-100e_in1k
In Collection: BEiTv2
Metadata:
Epochs: 100
Batch Size: 1024
FLOPs: 17581219584
Parameters: 86530984
Training Data: ImageNet-1k
In Collection: BEiTv2
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.0
Config: configs/beitv2/benchmarks/beit-base-p16_8xb128-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221212-d1c0789e.pth
Config: configs/beitv2/benchmarks/beit-base-p16_8xb128-coslr-100e_in1k.py
- Name: beit-base-p16_beitv2-in21k-pre_3rdparty_in1k
In Collection: BEiTv2
Metadata:
FLOPs: 17581219584
Parameters: 86530984
Training Data:
- ImageNet-21k
- ImageNet-1k
In Collection: BEiTv2
Results:
- Dataset: ImageNet-1k
Task: Image Classification
@ -57,7 +63,7 @@ Models:
Top 1 Accuracy: 86.47
Top 5 Accuracy: 97.99
Weights: https://download.openmmlab.com/mmclassification/v0/beit/beitv2-base_3rdparty_in1k_20221114-73e11905.pth
Config: configs/beitv2/benchmarks/beit-base-p16_8xb64_in1k.py
Converted From:
Weights: https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21kto1k.pth
Code: https://github.com/microsoft/unilm/tree/master/beit2
Config: configs/beitv2/benchmarks/beit-base-p16_8xb64_in1k.py

View File

@ -65,13 +65,13 @@ python tools/test.py configs/byol/benchmarks/resnet50_8xb512-linear-coslr-90e_in
| Model | Params (M) | Flops (G) | Config | Download |
| :-------------------------------------- | :--------: | :-------: | :------------------------------------------------: | :------------------------------------------------------------------------------------------: |
| `byol_resnet50_16xb256-coslr-200e_in1k` | N/A | N/A | [config](byol_resnet50_16xb256-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.json) |
| `byol_resnet50_16xb256-coslr-200e_in1k` | 68.02 | 4.11 | [config](byol_resnet50_16xb256-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.json) |
### Image Classification on ImageNet-1k
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
| :---------------------------------------- | :------------------------------------------: | :--------: | :-------: | :-------: | :----------------------------------------: | :-------------------------------------------: |
| `resnet50_byol-pre_8xb512-linear-coslr-90e_in1k` | [BYOL](https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth) | N/A | N/A | 71.80 | [config](benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-7596c6f5.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-7596c6f5.json) |
| `resnet50_byol-pre_8xb512-linear-coslr-90e_in1k` | [BYOL](https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth) | 25.56 | 4.11 | 71.80 | [config](benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-7596c6f5.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-7596c6f5.json) |
## Citation

View File

@ -9,30 +9,36 @@ Collections:
- ResNet
- BYOL
Paper:
URL: https://arxiv.org/abs/2006.07733
Title: "Bootstrap your own latent: A new approach to self-supervised Learning"
Title: 'Bootstrap your own latent: A new approach to self-supervised Learning'
URL: https://arxiv.org/abs/2006.07733
README: configs/byol/README.md
Models:
- Name: byol_resnet50_16xb256-coslr-200e_in1k
In Collection: BYOL
Metadata:
Epochs: 200
Batch Size: 4096
FLOPs: 4109364224
Parameters: 68024448
Training Data: ImageNet-1k
In Collection: BYOL
Results: null
Config: configs/byol/byol_resnet50_16xb256-coslr-200e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth
Config: configs/byol/byol_resnet50_16xb256-coslr-200e_in1k.py
Downstream:
- resnet50_byol-pre_8xb512-linear-coslr-90e_in1k
- Name: resnet50_byol-pre_8xb512-linear-coslr-90e_in1k
In Collection: BYOL
Metadata:
Epochs: 90
Batch Size: 4096
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: BYOL
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 71.8
Config: configs/byol/benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-7596c6f5.pth
Config: configs/byol/benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py

View File

@ -32,7 +32,7 @@ print(predict['pred_score'])
import torch
from mmpretrain import get_model
model = get_model('cae_vit-base-p16_8xb256-amp-coslr-300e_in1k', pretrained=True)
model = get_model('cae_beit-base-p16_8xb256-amp-coslr-300e_in1k', pretrained=True)
inputs = torch.rand(1, 3, 224, 224)
out = model(inputs)
print(type(out))
@ -48,7 +48,7 @@ Prepare your dataset according to the [docs](https://mmclassification.readthedoc
Train:
```shell
python tools/train.py configs/cae/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k.py
python tools/train.py configs/cae/cae_beit-base-p16_8xb256-amp-coslr-300e_in1k.py
```
Test:
@ -63,15 +63,15 @@ python tools/test.py configs/cae/benchmarks/beit-base-p16_8xb128-coslr-100e_in1k
### Pretrained models
| Model | Params (M) | Flops (G) | Config | Download |
| :-------------------------------------------- | :--------: | :-------: | :------------------------------------------------------: | :------------------------------------------------------------------------------: |
| `cae_vit-base-p16_8xb256-amp-coslr-300e_in1k` | N/A | N/A | [config](cae_vit-base-p16_8xb256-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221230-808170f3.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221230-808170f3.json) |
| Model | Params (M) | Flops (G) | Config | Download |
| :--------------------------------------------- | :--------: | :-------: | :-------------------------------------------------------: | :----------------------------------------------------------------------------: |
| `cae_beit-base-p16_8xb256-amp-coslr-300e_in1k` | 288.43 | 17.58 | [config](cae_beit-base-p16_8xb256-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221230-808170f3.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221230-808170f3.json) |
### Image Classification on ImageNet-1k
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
| :---------------------------------------- | :------------------------------------------: | :--------: | :-------: | :-------: | :----------------------------------------: | :-------------------------------------------: |
| `beit-base-p16_cae-pre_8xb128-coslr-100e_in1k` | [CAE](https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221230-808170f3.pth) | N/A | N/A | 83.20 | [config](benchmarks/beit-base-p16_8xb128-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k_20220825-f3d234cd.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k_20220825-f3d234cd.json) |
| `beit-base-p16_cae-pre_8xb128-coslr-100e_in1k` | [CAE](https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221230-808170f3.pth) | 86.68 | 17.58 | 83.20 | [config](benchmarks/beit-base-p16_8xb128-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k_20220825-f3d234cd.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k_20220825-f3d234cd.json) |
## Citation

View File

@ -8,30 +8,36 @@ Collections:
Architecture:
- ViT
Paper:
URL: https://arxiv.org/abs/2202.03026
Title: "Context Autoencoder for Self-Supervised Representation Learning"
Title: Context Autoencoder for Self-Supervised Representation Learning
URL: https://arxiv.org/abs/2202.03026
README: configs/cae/README.md
Models:
- Name: cae_vit-base-p16_8xb256-amp-coslr-300e_in1k
In Collection: CAE
- Name: cae_beit-base-p16_8xb256-amp-coslr-300e_in1k
Metadata:
Epochs: 300
Batch Size: 2048
FLOPs: 17581976064
Parameters: 288429952
Training Data: ImageNet-1k
In Collection: CAE
Results: null
Config: configs/cae/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k/cae_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221230-808170f3.pth
Config: configs/cae/cae_beit-base-p16_8xb256-amp-coslr-300e_in1k.py
Downstream:
- beit-base-p16_cae-pre_8xb128-coslr-100e_in1k
- Name: beit-base-p16_cae-pre_8xb128-coslr-100e_in1k
In Collection: CAE
Metadata:
Epochs: 100
Batch Size: 1024
FLOPs: 17581219584
Parameters: 86682280
Training Data: ImageNet-1k
In Collection: CAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.2
Config: configs/cae/benchmarks/beit-base-p16_8xb128-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/cae/cae_vit-base-p16_16xb128-fp16-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k/vit-base-p16_ft-8xb128-coslr-100e-rpe_in1k_20220825-f3d234cd.pth
Config: configs/cae/benchmarks/beit-base-p16_8xb128-coslr-100e_in1k.py

View File

@ -20,6 +20,44 @@ Collections:
Version: v1.0.0
Models:
- Name: vit-base-p32_clip-openai-pre_3rdparty_in1k
Metadata:
FLOPs: 4364335104
Parameters: 88225000
Training Data:
- OpenAI
- ImageNet-1k
In Collection: CLIP
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 81.77
Top 5 Accuracy: 95.89
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/clip/clip-vit-base-p32_openai-pre_3rdparty_in1k_20221220-a0182ba9.pth
Config: configs/clip/vit-base-p32_pt-64xb64_in1k.py
Converted From:
Code: https://github.com/rwightman/pytorch-image-models
Weights: https://huggingface.co/timm/vit_base_patch32_clip_224.openai_ft_in1k
- Name: vit-base-p32_clip-laion2b-pre_3rdparty_in1k
Metadata:
FLOPs: 4364335104
Parameters: 88225000
Training Data:
- LAION-2B
- ImageNet-1k
In Collection: CLIP
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 82.46
Top 5 Accuracy: 96.12
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/clip/clip-vit-base-p32_laion2b-pre_3rdparty_in1k_20221220-194df57f.pth
Config: configs/clip/vit-base-p32_pt-64xb64_in1k.py
Converted From:
Code: https://github.com/rwightman/pytorch-image-models
Weights: https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in1k
- Name: vit-base-p32_clip-laion2b-in12k-pre_3rdparty_in1k
Metadata:
FLOPs: 4364335104
@ -40,64 +78,6 @@ Models:
Converted From:
Code: https://github.com/rwightman/pytorch-image-models
Weights: https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k
- Name: vit-base-p32_clip-laion2b-pre_3rdparty_in1k
Metadata:
FLOPs: 4364335104
Parameters: 88225000
Training Data:
- LAION-2B
- ImageNet-1k
In Collection: CLIP
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 82.46
Top 5 Accuracy: 96.12
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/clip/clip-vit-base-p32_laion2b-pre_3rdparty_in1k_20221220-194df57f.pth
Config: configs/clip/vit-base-p32_pt-64xb64_in1k.py
Converted From:
Code: https://github.com/rwightman/pytorch-image-models
Weights: https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in1k
- Name: vit-base-p32_clip-openai-pre_3rdparty_in1k
Metadata:
FLOPs: 4364335104
Parameters: 88225000
Training Data:
- OpenAI
- ImageNet-1k
In Collection: CLIP
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 81.77
Top 5 Accuracy: 95.89
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/clip/clip-vit-base-p32_openai-pre_3rdparty_in1k_20221220-a0182ba9.pth
Config: configs/clip/vit-base-p32_pt-64xb64_in1k.py
Converted From:
Code: https://github.com/rwightman/pytorch-image-models
Weights: https://huggingface.co/timm/vit_base_patch32_clip_224.openai_ft_in1k
- Name: vit-base-p32_clip-laion2b-in12k-pre_3rdparty_in1k-384px
Metadata:
FLOPs: 12661054464
Parameters: 88225000
Training Data:
- LAION-2B
- ImageNet-12k
- ImageNet-1k
In Collection: CLIP
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.39
Top 5 Accuracy: 97.67
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/clip/clip-vit-base-p32_laion2b-in12k-pre_3rdparty_in1k-384px_20221220-c7757552.pth
Config: configs/clip/vit-base-p32_pt-64xb64_in1k-384px.py
Converted From:
Code: https://github.com/rwightman/pytorch-image-models
Weights: https://huggingface.co/timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k
- Name: vit-base-p32_clip-openai-in12k-pre_3rdparty_in1k-384px
Metadata:
FLOPs: 12661054464
@ -118,10 +98,10 @@ Models:
Converted From:
Code: https://github.com/rwightman/pytorch-image-models
Weights: https://huggingface.co/timm/vit_base_patch32_clip_384.openai_ft_in12k_in1k
- Name: vit-base-p16_clip-laion2b-in12k-pre_3rdparty_in1k
- Name: vit-base-p32_clip-laion2b-in12k-pre_3rdparty_in1k-384px
Metadata:
FLOPs: 16855600128
Parameters: 86568424
FLOPs: 12661054464
Parameters: 88225000
Training Data:
- LAION-2B
- ImageNet-12k
@ -130,14 +110,33 @@ Models:
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 86.02
Top 5 Accuracy: 97.76
Top 1 Accuracy: 85.39
Top 5 Accuracy: 97.67
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/clip/clip-vit-base-p16_laion2b-in12k-pre_3rdparty_in1k_20221220-a5e31f8c.pth
Weights: https://download.openmmlab.com/mmclassification/v0/clip/clip-vit-base-p32_laion2b-in12k-pre_3rdparty_in1k-384px_20221220-c7757552.pth
Config: configs/clip/vit-base-p32_pt-64xb64_in1k-384px.py
Converted From:
Code: https://github.com/rwightman/pytorch-image-models
Weights: https://huggingface.co/timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k
- Name: vit-base-p16_clip-openai-pre_3rdparty_in1k
Metadata:
FLOPs: 16855600128
Parameters: 86568424
Training Data:
- OpenAI
- ImageNet-1k
In Collection: CLIP
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.3
Top 5 Accuracy: 97.5
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/clip/clip-vit-base-p16_openai-pre_3rdparty_in1k_20221220-c7d9c899.pth
Config: configs/clip/vit-base-p16_pt-64xb64_in1k.py
Converted From:
Code: https://github.com/rwightman/pytorch-image-models
Weights: https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k
Weights: https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in1k
- Name: vit-base-p16_clip-laion2b-pre_3rdparty_in1k
Metadata:
FLOPs: 16855600128
@ -177,25 +176,26 @@ Models:
Converted From:
Code: https://github.com/rwightman/pytorch-image-models
Weights: https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k
- Name: vit-base-p16_clip-openai-pre_3rdparty_in1k
- Name: vit-base-p16_clip-laion2b-in12k-pre_3rdparty_in1k
Metadata:
FLOPs: 16855600128
Parameters: 86568424
Training Data:
- OpenAI
- LAION-2B
- ImageNet-12k
- ImageNet-1k
In Collection: CLIP
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.3
Top 5 Accuracy: 97.5
Top 1 Accuracy: 86.02
Top 5 Accuracy: 97.76
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/clip/clip-vit-base-p16_openai-pre_3rdparty_in1k_20221220-c7d9c899.pth
Weights: https://download.openmmlab.com/mmclassification/v0/clip/clip-vit-base-p16_laion2b-in12k-pre_3rdparty_in1k_20221220-a5e31f8c.pth
Config: configs/clip/vit-base-p16_pt-64xb64_in1k.py
Converted From:
Code: https://github.com/rwightman/pytorch-image-models
Weights: https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in1k
Weights: https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k
- Name: vit-base-p32_clip-laion2b-in12k-pre_3rdparty_in1k-448px
Metadata:
FLOPs: 17202416640
@ -216,26 +216,25 @@ Models:
Converted From:
Code: https://github.com/rwightman/pytorch-image-models
Weights: https://huggingface.co/timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k
- Name: vit-base-p16_clip-laion2b-in12k-pre_3rdparty_in1k-384px
- Name: vit-base-p16_clip-openai-pre_3rdparty_in1k-384px
Metadata:
FLOPs: 49370078208
Parameters: 86568424
Training Data:
- LAION-2B
- ImageNet-12k
- OpenAI
- ImageNet-1k
In Collection: CLIP
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 87.17
Top 5 Accuracy: 98.02
Top 1 Accuracy: 86.25
Top 5 Accuracy: 97.9
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/clip/clip-vit-base-p16_laion2b-in12k-pre_3rdparty_in1k-384px_20221220-84ed0cc0.pth
Weights: https://download.openmmlab.com/mmclassification/v0/clip/clip-vit-base-p16_openai-pre_3rdparty_in1k-384px_20221220-eb012e87.pth
Config: configs/clip/vit-base-p16_pt-64xb64_in1k-384px.py
Converted From:
Code: https://github.com/rwightman/pytorch-image-models
Weights: https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k
Weights: https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in1k
- Name: vit-base-p16_clip-laion2b-pre_3rdparty_in1k-384px
Metadata:
FLOPs: 49370078208
@ -275,22 +274,23 @@ Models:
Converted From:
Code: https://github.com/rwightman/pytorch-image-models
Weights: https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in12k_in1k
- Name: vit-base-p16_clip-openai-pre_3rdparty_in1k-384px
- Name: vit-base-p16_clip-laion2b-in12k-pre_3rdparty_in1k-384px
Metadata:
FLOPs: 49370078208
Parameters: 86568424
Training Data:
- OpenAI
- LAION-2B
- ImageNet-12k
- ImageNet-1k
In Collection: CLIP
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 86.25
Top 5 Accuracy: 97.9
Top 1 Accuracy: 87.17
Top 5 Accuracy: 98.02
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/clip/clip-vit-base-p16_openai-pre_3rdparty_in1k-384px_20221220-eb012e87.pth
Weights: https://download.openmmlab.com/mmclassification/v0/clip/clip-vit-base-p16_laion2b-in12k-pre_3rdparty_in1k-384px_20221220-84ed0cc0.pth
Config: configs/clip/vit-base-p16_pt-64xb64_in1k-384px.py
Converted From:
Code: https://github.com/rwightman/pytorch-image-models
Weights: https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in1k
Weights: https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k

View File

@ -65,13 +65,13 @@ python tools/test.py configs/densecl/benchmarks/resnet50_8xb32-linear-steplr-100
| Model | Params (M) | Flops (G) | Config | Download |
| :--------------------------------------- | :--------: | :-------: | :-------------------------------------------------: | :----------------------------------------------------------------------------------------: |
| `densecl_resnet50_8xb32-coslr-200e_in1k` | N/A | N/A | [config](densecl_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/densecl_resnet50_8xb32-coslr-200e_in1k_20220825-3078723b.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/densecl_resnet50_8xb32-coslr-200e_in1k_20220825-3078723b.json) |
| `densecl_resnet50_8xb32-coslr-200e_in1k` | 64.85 | 4.11 | [config](densecl_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/densecl_resnet50_8xb32-coslr-200e_in1k_20220825-3078723b.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/densecl_resnet50_8xb32-coslr-200e_in1k_20220825-3078723b.json) |
### Image Classification on ImageNet-1k
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
| :---------------------------------------- | :------------------------------------------: | :--------: | :-------: | :-------: | :----------------------------------------: | :-------------------------------------------: |
| `resnet50_densecl-pre_8xb32-linear-steplr-100e_in1k` | [DENSECL](https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/densecl_resnet50_8xb32-coslr-200e_in1k_20220825-3078723b.pth) | N/A | N/A | 63.50 | [config](benchmarks/resnet50_8xb32-linear-steplr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-f0f0a579.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-f0f0a579.json) |
| `resnet50_densecl-pre_8xb32-linear-steplr-100e_in1k` | [DENSECL](https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/densecl_resnet50_8xb32-coslr-200e_in1k_20220825-3078723b.pth) | 25.56 | 4.11 | 63.50 | [config](benchmarks/resnet50_8xb32-linear-steplr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-f0f0a579.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-f0f0a579.json) |
## Citation

View File

@ -9,30 +9,36 @@ Collections:
Architecture:
- ResNet
Paper:
URL: https://arxiv.org/abs/2011.09157
Title: "Dense contrastive learning for self-supervised visual pre-training"
Title: Dense contrastive learning for self-supervised visual pre-training
URL: https://arxiv.org/abs/2011.09157
README: configs/densecl/README.md
Models:
- Name: densecl_resnet50_8xb32-coslr-200e_in1k
In Collection: DenseCL
Metadata:
Epochs: 200
Batch Size: 256
FLOPs: 4109364224
Parameters: 64850560
Training Data: ImageNet-1k
In Collection: DenseCL
Results: null
Config: configs/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/densecl_resnet50_8xb32-coslr-200e_in1k_20220825-3078723b.pth
Config: configs/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py
Downstream:
- resnet50_densecl-pre_8xb32-linear-steplr-100e_in1k
- Name: resnet50_densecl-pre_8xb32-linear-steplr-100e_in1k
In Collection: DenseCL
Metadata:
Epochs: 100
Batch Size: 256
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: DenseCL
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 63.5
Config: configs/densecl/benchmarks/resnet50_8xb32-linear-steplr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-f0f0a579.pth
Config: configs/densecl/benchmarks/resnet50_8xb32-linear-steplr-100e_in1k.py

View File

@ -21,7 +21,7 @@ We launch EVA, a vision-centric foundation model to explore the limits of visual
```python
from mmpretrain import inference_model
predict = inference_model('beit-g-p14_eva-30m-in21k-pre_3rdparty_in1k-336px', 'demo/bird.JPEG')
predict = inference_model('vit-base-p16_eva-mae-style-pre_8xb128-coslr-100e_in1k', 'demo/bird.JPEG')
print(predict['pred_class'])
print(predict['pred_score'])
```
@ -32,7 +32,7 @@ print(predict['pred_score'])
import torch
from mmpretrain import get_model
model = get_model('beit-g-p14_3rdparty-eva_30m', pretrained=True)
model = get_model('eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k', pretrained=True)
inputs = torch.rand(1, 3, 224, 224)
out = model(inputs)
print(type(out))
@ -54,7 +54,7 @@ python tools/train.py configs/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_
Test:
```shell
python tools/test.py configs/eva/eva-g-p14_8xb16_in1k-336px.py https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_30m-in21k-pre_3rdparty_in1k-336px_20221213-210f9071.pth
python tools/test.py configs/eva/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221226-f61cf992.pth
```
<!-- [TABS-END] -->
@ -65,12 +65,12 @@ python tools/test.py configs/eva/eva-g-p14_8xb16_in1k-336px.py https://download.
| Model | Params (M) | Flops (G) | Config | Download |
| :--------------------------------------------------- | :--------: | :-------: | :-------------------------------------------------------------: | :----------------------------------------------------------------: |
| `beit-g-p14_3rdparty-eva_30m`\* | 1011.60 | 267.17 | [config](eva-g-p14_headless.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_3rdparty_30m_20221213-3b7aca97.pth) |
| `beit-g-p16_3rdparty-eva_30m`\* | 1011.32 | 203.52 | [config](eva-g-p16_headless.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p16_3rdparty_30m_20221213-7bed23ee.pth) |
| `beit-g-p14_eva-30m-pre_3rdparty_in21k`\* | 1011.60 | 267.17 | [config](eva-g-p14_headless.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_30m-pre_3rdparty_in21k_20221213-d72285b7.pth) |
| `eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k` | 111.78 | 17.58 | [config](eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k_20221226-26d90f07.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k_20221226-26d90f07.json) |
| `beit-l-p14_3rdparty-eva_in21k`\* | 303.18 | 81.08 | [config](eva-l-p14_headless.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_3rdparty-mim_in21k_20221213-3a5da50b.pth) |
| `beit-l-p14_eva-pre_3rdparty_in21k`\* | 303.18 | 81.08 | [config](eva-l-p14_headless.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-pre_3rdparty_in21k_20221213-8f194fa2.pth) |
| `eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k` | N/A | N/A | [config](eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k_20221226-26d90f07.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k_20221226-26d90f07.json) |
| `beit-g-p16_3rdparty-eva_30m`\* | 1011.32 | 203.52 | [config](eva-g-p16_headless.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p16_3rdparty_30m_20221213-7bed23ee.pth) |
| `beit-g-p14_3rdparty-eva_30m`\* | 1011.60 | 267.17 | [config](eva-g-p14_headless.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_3rdparty_30m_20221213-3b7aca97.pth) |
| `beit-g-p14_eva-30m-pre_3rdparty_in21k`\* | 1011.60 | 267.17 | [config](eva-g-p14_headless.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_30m-pre_3rdparty_in21k_20221213-d72285b7.pth) |
*Models with * are converted from the [official repo](https://github.com/baaivision/EVA). The config files of these models are only for inference. We haven't reprodcue the training results.*
@ -78,14 +78,14 @@ python tools/test.py configs/eva/eva-g-p14_8xb16_in1k-336px.py https://download.
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Top-5 (%) | Config | Download |
| :-------------------------------------- | :----------------------------------------: | :--------: | :-------: | :-------: | :-------: | :--------------------------------------: | :----------------------------------------: |
| `beit-g-p14_eva-30m-in21k-pre_3rdparty_in1k-336px`\* | [EVA merged-30M ImageNet-21k](https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_30m-pre_3rdparty_in21k_20221213-d72285b7.pth) | 1013.01 | 620.64 | 89.61 | 98.93 | [config](eva-g-p14_8xb16_in1k-336px.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_30m-in21k-pre_3rdparty_in1k-336px_20221213-210f9071.pth) |
| `beit-g-p14_eva-30m-in21k-pre_3rdparty_in1k-560px`\* | [EVA merged-30M ImageNet-21k](https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_30m-pre_3rdparty_in21k_20221213-d72285b7.pth) | 1014.45 | 1906.76 | 89.71 | 98.96 | [config](eva-g-p14_8xb16_in1k-560px.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_30m-in21k-pre_3rdparty_in1k-560px_20221213-fa1c3652.pth) |
| `beit-l-p14_eva-pre_3rdparty_in1k-336px`\* | [EVA](https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_3rdparty-mim_in21k_20221213-3a5da50b.pth) | 304.53 | 191.10 | 88.66 | 98.75 | [config](eva-l-p14_8xb16_in1k-336px.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-pre_3rdparty_in1k-336px_20221214-07785cfd.pth) |
| `beit-l-p14_eva-in21k-pre_3rdparty_in1k-336px`\* | EVA ImageNet-21k | 304.53 | 191.10 | 89.17 | 98.86 | [config](eva-l-p14_8xb16_in1k-336px.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-in21k-pre_3rdparty_in1k-336px_20221213-f25b7634.pth) |
| `vit-base-p16_eva-mae-style-pre_8xb128-coslr-100e_in1k` | [EVA MAE STYLE](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k_20221226-26d90f07.pth) | 86.57 | 17.58 | 83.70 | N/A | [config](benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221226-f61cf992.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221226-f61cf992.json) |
| `vit-base-p16_eva-mae-style-pre_8xb2048-linear-coslr-100e_in1k` | [EVA MAE STYLE](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k_20221226-26d90f07.pth) | 86.57 | 17.58 | 69.00 | N/A | [config](benchmarks/vit-base-p16_8xb2048-linear-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221226-ef51bf09.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221226-ef51bf09.json) |
| `beit-l-p14_eva-pre_3rdparty_in1k-196px`\* | [EVA](https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_3rdparty-mim_in21k_20221213-3a5da50b.pth) | 304.14 | 61.57 | 87.94 | 98.5 | [config](eva-l-p14_8xb16_in1k-196px.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-pre_3rdparty_in1k-196px_20221214-2adf4d28.pth) |
| `beit-l-p14_eva-in21k-pre_3rdparty_in1k-196px`\* | EVA ImageNet-21k | 304.14 | 61.57 | 88.58 | 98.65 | [config](eva-l-p14_8xb16_in1k-196px.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-in21k-pre_3rdparty_in1k-196px_20221213-b730c7e7.pth) |
| `vit-base-p16_eva-mae-style-pre_8xb128-coslr-100e_in1k` | [EVA mae-style](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k_20221226-26d90f07.pth) | N/A | N/A | 83.70 | N/A | [config](benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221226-f61cf992.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221226-f61cf992.json) |
| `vit-base-p16_eva-mae-style-pre_8xb2048-linear-coslr-100e_in1k` | [EVA mae-style](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k_20221226-26d90f07.pth) | N/A | N/A | 69.00 | N/A | [config](benchmarks/vit-base-p16_8xb2048-linear-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221226-ef51bf09.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221226-ef51bf09.json) |
| `beit-l-p14_eva-pre_3rdparty_in1k-336px`\* | [EVA](https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_3rdparty-mim_in21k_20221213-3a5da50b.pth) | 304.53 | 191.10 | 88.66 | 98.75 | [config](eva-l-p14_8xb16_in1k-336px.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-pre_3rdparty_in1k-336px_20221214-07785cfd.pth) |
| `beit-l-p14_eva-in21k-pre_3rdparty_in1k-336px`\* | EVA ImageNet-21k | 304.53 | 191.10 | 89.17 | 98.86 | [config](eva-l-p14_8xb16_in1k-336px.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-in21k-pre_3rdparty_in1k-336px_20221213-f25b7634.pth) |
| `beit-g-p14_eva-30m-in21k-pre_3rdparty_in1k-336px`\* | [EVA 30M ImageNet-21k](https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_30m-pre_3rdparty_in21k_20221213-d72285b7.pth) | 1013.01 | 620.64 | 89.61 | 98.93 | [config](eva-g-p14_8xb16_in1k-336px.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_30m-in21k-pre_3rdparty_in1k-336px_20221213-210f9071.pth) |
| `beit-g-p14_eva-30m-in21k-pre_3rdparty_in1k-560px`\* | [EVA 30M ImageNet-21k](https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_30m-pre_3rdparty_in21k_20221213-d72285b7.pth) | 1014.45 | 1906.76 | 89.71 | 98.96 | [config](eva-g-p14_8xb16_in1k-560px.py) | [model](https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_30m-in21k-pre_3rdparty_in1k-560px_20221213-fa1c3652.pth) |
*Models with * are converted from the [official repo](https://github.com/baaivision/EVA). The config files of these models are only for inference. We haven't reprodcue the training results.*

View File

@ -12,64 +12,214 @@ Collections:
- Scaled Dot-Product Attention
- Tanh Activation
Paper:
Title: 'EVA: Exploring the Limits of Masked Visual Representation Learning at
Scale'
URL: https://arxiv.org/abs/2211.07636
Title: 'EVA: Exploring the Limits of Masked Visual Representation Learning at Scale'
README: configs/eva/README.md
Code:
URL:
Version:
URL: null
Version: null
Models:
- Name: beit-g-p14_3rdparty-eva_30m
In Collection: EVA
- Name: eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k
Metadata:
FLOPs: 267174833024
Parameters: 1011596672
Training Data:
- merged-30M
Results: null
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_3rdparty_30m_20221213-3b7aca97.pth
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_psz14.pt
Code: https://github.com/baaivision/EVA
Config: configs/eva/eva-g-p14_headless.py
Downstream:
- beit-g-p14_eva-30m-pre_3rdparty_in21k
- Name: beit-g-p16_3rdparty-eva_30m
Epochs: 400
Batch Size: 4096
FLOPs: 17581972224
Parameters: 111776512
Training Data: ImageNet-1k
In Collection: EVA
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k_20221226-26d90f07.pth
Config: configs/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k.py
Downstream:
- vit-base-p16_eva-mae-style-pre_8xb128-coslr-100e_in1k
- vit-base-p16_eva-mae-style-pre_8xb2048-linear-coslr-100e_in1k
- Name: vit-base-p16_eva-mae-style-pre_8xb128-coslr-100e_in1k
Metadata:
Epochs: 100
Batch Size: 1024
FLOPs: 17581215744
Parameters: 86566120
Training Data: ImageNet-1k
In Collection: EVA
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.7
Weights: https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221226-f61cf992.pth
Config: configs/eva/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py
- Name: vit-base-p16_eva-mae-style-pre_8xb2048-linear-coslr-100e_in1k
Metadata:
Epochs: 100
Batch Size: 16384
FLOPs: 17581972992
Parameters: 86567656
Training Data: ImageNet-1k
In Collection: EVA
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 69.0
Weights: https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221226-ef51bf09.pth
Config: configs/eva/benchmarks/vit-base-p16_8xb2048-linear-coslr-100e_in1k.py
- Name: beit-l-p14_eva-pre_3rdparty_in1k-196px
Metadata:
FLOPs: 61565981696
Parameters: 304142312
Training Data:
- ImageNet-21k
- ImageNet-1k
In Collection: EVA
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 87.94
Top 5 Accuracy: 98.5
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-pre_3rdparty_in1k-196px_20221214-2adf4d28.pth
Config: configs/eva/eva-l-p14_8xb16_in1k-196px.py
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_l_psz14_196px_1k_ft_88p0.pt
Code: https://github.com/baaivision/EVA
- Name: beit-l-p14_eva-in21k-pre_3rdparty_in1k-196px
Metadata:
FLOPs: 61565981696
Parameters: 304142312
Training Data:
- ImageNet-21k
- ImageNet-1k
In Collection: EVA
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 88.58
Top 5 Accuracy: 98.65
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-in21k-pre_3rdparty_in1k-196px_20221213-b730c7e7.pth
Config: configs/eva/eva-l-p14_8xb16_in1k-196px.py
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_l_psz14_196px_21k_to_1k_ft_88p6.pt
Code: https://github.com/baaivision/EVA
- Name: beit-l-p14_3rdparty-eva_in21k
Metadata:
FLOPs: 81075147776
Parameters: 303178752
Training Data:
- ImageNet-21k
In Collection: EVA
Results: null
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_3rdparty-mim_in21k_20221213-3a5da50b.pth
Config: configs/eva/eva-l-p14_headless.py
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_l_psz14.pt
Code: https://github.com/baaivision/EVA
Downstream:
- beit-l-p14_eva-pre_3rdparty_in21k
- beit-l-p14_eva-pre_3rdparty_in1k-336px
- beit-l-p14_eva-pre_3rdparty_in1k-196px
- Name: beit-l-p14_eva-pre_3rdparty_in21k
Metadata:
FLOPs: 81075147776
Parameters: 303178752
Training Data:
- ImageNet-21k
In Collection: EVA
Results: null
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-pre_3rdparty_in21k_20221213-8f194fa2.pth
Config: configs/eva/eva-l-p14_headless.py
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_l_psz14_21k_ft.pt
Code: https://github.com/baaivision/EVA
- Name: beit-l-p14_eva-pre_3rdparty_in1k-336px
Metadata:
FLOPs: 191100916736
Parameters: 304531432
Training Data:
- ImageNet-21k
- ImageNet-1k
In Collection: EVA
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 88.66
Top 5 Accuracy: 98.75
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-pre_3rdparty_in1k-336px_20221214-07785cfd.pth
Config: configs/eva/eva-l-p14_8xb16_in1k-336px.py
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_l_psz14_336px_1k_ft_88p65.pt
Code: https://github.com/baaivision/EVA
Downstream:
- beit-l-p14_eva-in21k-pre_3rdparty_in1k-336px
- beit-l-p14_eva-in21k-pre_3rdparty_in1k-196px
- Name: beit-l-p14_eva-in21k-pre_3rdparty_in1k-336px
Metadata:
FLOPs: 191100916736
Parameters: 304531432
Training Data:
- ImageNet-21k
- ImageNet-1k
In Collection: EVA
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 89.17
Top 5 Accuracy: 98.86
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-in21k-pre_3rdparty_in1k-336px_20221213-f25b7634.pth
Config: configs/eva/eva-l-p14_8xb16_in1k-336px.py
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_l_psz14_336px_21k_to_1k_ft_89p2.pt
Code: https://github.com/baaivision/EVA
- Name: beit-g-p16_3rdparty-eva_30m
Metadata:
FLOPs: 203517463424
Parameters: 1011315072
Training Data:
- merged-30M
In Collection: EVA
Results: null
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p16_3rdparty_30m_20221213-7bed23ee.pth
Config: configs/eva/eva-g-p16_headless.py
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_psz14to16.pt
Code: https://github.com/baaivision/EVA
Config: configs/eva/eva-g-p16_headless.py
- Name: beit-g-p14_eva-30m-pre_3rdparty_in21k
- Name: beit-g-p14_3rdparty-eva_30m
Metadata:
FLOPs: 267174833024
Parameters: 1011596672
Training Data:
- merged-30M
In Collection: EVA
Results: null
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_3rdparty_30m_20221213-3b7aca97.pth
Config: configs/eva/eva-g-p14_headless.py
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_psz14.pt
Code: https://github.com/baaivision/EVA
Downstream:
- beit-g-p14_eva-30m-pre_3rdparty_in21k
- Name: beit-g-p14_eva-30m-pre_3rdparty_in21k
Metadata:
FLOPs: 267174833024
Parameters: 1011596672
Training Data:
- merged-30M
- ImageNet-21k
In Collection: EVA
Results: null
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_30m-pre_3rdparty_in21k_20221213-d72285b7.pth
Config: configs/eva/eva-g-p14_headless.py
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_21k_224px_psz14.pt
Code: https://github.com/baaivision/EVA
Config: configs/eva/eva-g-p14_headless.py
Downstream:
- beit-g-p14_eva-30m-in21k-pre_3rdparty_in1k-336px
- beit-g-p14_eva-30m-in21k-pre_3rdparty_in1k-560px
- Name: beit-g-p14_eva-30m-in21k-pre_3rdparty_in1k-336px
In Collection: EVA
Metadata:
FLOPs: 620642757504
Parameters: 1013005672
@ -77,20 +227,19 @@ Models:
- merged-30M
- ImageNet-21k
- ImageNet-1k
In Collection: EVA
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 89.61
Top 5 Accuracy: 98.93
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 89.61
Top 5 Accuracy: 98.93
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_30m-in21k-pre_3rdparty_in1k-336px_20221213-210f9071.pth
Config: configs/eva/eva-g-p14_8xb16_in1k-336px.py
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt
Code: https://github.com/baaivision/EVA
Config: configs/eva/eva-g-p14_8xb16_in1k-336px.py
- Name: beit-g-p14_eva-30m-in21k-pre_3rdparty_in1k-560px
In Collection: EVA
Metadata:
FLOPs: 1906761591680
Parameters: 1014447464
@ -98,165 +247,15 @@ Models:
- merged-30M
- ImageNet-21k
- ImageNet-1k
In Collection: EVA
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 89.71
Top 5 Accuracy: 98.96
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 89.71
Top 5 Accuracy: 98.96
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-g-p14_30m-in21k-pre_3rdparty_in1k-560px_20221213-fa1c3652.pth
Config: configs/eva/eva-g-p14_8xb16_in1k-560px.py
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_560px_psz14_ema_89p7.pt
Code: https://github.com/baaivision/EVA
Config: configs/eva/eva-g-p14_8xb16_in1k-560px.py
- Name: beit-l-p14_3rdparty-eva_in21k
In Collection: EVA
Metadata:
FLOPs: 81075147776
Parameters: 303178752
Training Data:
- ImageNet-21k
Results: null
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_3rdparty-mim_in21k_20221213-3a5da50b.pth
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_l_psz14.pt
Code: https://github.com/baaivision/EVA
Config: configs/eva/eva-l-p14_headless.py
Downstream:
- beit-l-p14_eva-pre_3rdparty_in21k
- beit-l-p14_eva-pre_3rdparty_in1k-336px
- beit-l-p14_eva-pre_3rdparty_in1k-196px
- Name: beit-l-p14_eva-pre_3rdparty_in21k
In Collection: EVA
Metadata:
FLOPs: 81075147776
Parameters: 303178752
Training Data:
- ImageNet-21k
Results: null
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-pre_3rdparty_in21k_20221213-8f194fa2.pth
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_l_psz14_21k_ft.pt
Code: https://github.com/baaivision/EVA
Config: configs/eva/eva-l-p14_headless.py
- Name: beit-l-p14_eva-pre_3rdparty_in1k-336px
In Collection: EVA
Metadata:
FLOPs: 191100916736
Parameters: 304531432
Training Data:
- ImageNet-21k
- ImageNet-1k
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 88.66
Top 5 Accuracy: 98.75
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-pre_3rdparty_in1k-336px_20221214-07785cfd.pth
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_l_psz14_336px_1k_ft_88p65.pt
Code: https://github.com/baaivision/EVA
Config: configs/eva/eva-l-p14_8xb16_in1k-336px.py
Downstream:
- beit-l-p14_eva-in21k-pre_3rdparty_in1k-336px
- beit-l-p14_eva-in21k-pre_3rdparty_in1k-196px
- Name: beit-l-p14_eva-in21k-pre_3rdparty_in1k-336px
In Collection: EVA
Metadata:
FLOPs: 191100916736
Parameters: 304531432
Training Data:
- ImageNet-21k
- ImageNet-1k
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 89.17
Top 5 Accuracy: 98.86
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-in21k-pre_3rdparty_in1k-336px_20221213-f25b7634.pth
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_l_psz14_336px_21k_to_1k_ft_89p2.pt
Code: https://github.com/baaivision/EVA
Config: configs/eva/eva-l-p14_8xb16_in1k-336px.py
- Name: beit-l-p14_eva-pre_3rdparty_in1k-196px
In Collection: EVA
Metadata:
FLOPs: 61565981696
Parameters: 304142312
Training Data:
- ImageNet-21k
- ImageNet-1k
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 87.94
Top 5 Accuracy: 98.50
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-pre_3rdparty_in1k-196px_20221214-2adf4d28.pth
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_l_psz14_196px_1k_ft_88p0.pt
Code: https://github.com/baaivision/EVA
Config: configs/eva/eva-l-p14_8xb16_in1k-196px.py
- Name: beit-l-p14_eva-in21k-pre_3rdparty_in1k-196px
In Collection: EVA
Metadata:
FLOPs: 61565981696
Parameters: 304142312
Training Data:
- ImageNet-21k
- ImageNet-1k
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 88.58
Top 5 Accuracy: 98.65
Weights: https://download.openmmlab.com/mmclassification/v0/eva/eva-l-p14_mim-in21k-pre_3rdparty_in1k-196px_20221213-b730c7e7.pth
Converted From:
Weights: https://huggingface.co/BAAI/EVA/blob/main/eva_l_psz14_196px_21k_to_1k_ft_88p6.pt
Code: https://github.com/baaivision/EVA
Config: configs/eva/eva-l-p14_8xb16_in1k-196px.py
- Name: eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k
In Collection: EVA
Metadata:
Epochs: 400
Batch Size: 4096
Results: null
Config: configs/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k_20221226-26d90f07.pth
Downstream:
- vit-base-p16_eva-mae-style-pre_8xb128-coslr-100e_in1k
- vit-base-p16_eva-mae-style-pre_8xb2048-linear-coslr-100e_in1k
- Name: vit-base-p16_eva-mae-style-pre_8xb128-coslr-100e_in1k
In Collection: EVA
Metadata:
Epochs: 100
Batch Size: 1024
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.7
Config: configs/eva/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221226-f61cf992.pth
- Name: vit-base-p16_eva-mae-style-pre_8xb2048-linear-coslr-100e_in1k
In Collection: EVA
Metadata:
Epochs: 100
Batch Size: 16384
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 69.0
Config: configs/eva/benchmarks/vit-base-p16_8xb2048-linear-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/eva/eva-mae-style_vit-base-p16_16xb256-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221226-ef51bf09.pth

View File

@ -36,7 +36,7 @@ methods that use only ImageNet-1K data. Transfer performance in downstream tasks
```python
from mmpretrain import inference_model
predict = inference_model('vit-base-p16_mae-300e-pre_8xb2048-linear-coslr-90e_in1k', 'demo/bird.JPEG')
predict = inference_model('vit-base-p16_mae-300e-pre_8xb128-coslr-100e_in1k', 'demo/bird.JPEG')
print(predict['pred_class'])
print(predict['pred_score'])
```
@ -69,7 +69,7 @@ python tools/train.py configs/mae/mae_vit-base-p16_8xb512-amp-coslr-300e_in1k.py
Test:
```shell
python tools/test.py configs/mae/benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py None
python tools/test.py configs/mae/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py None
```
<!-- [TABS-END] -->
@ -80,35 +80,35 @@ python tools/test.py configs/mae/benchmarks/vit-base-p16_8xb2048-linear-coslr-90
| Model | Params (M) | Flops (G) | Config | Download |
| :---------------------------------------------- | :--------: | :-------: | :--------------------------------------------------------: | :--------------------------------------------------------------------------: |
| `mae_vit-base-p16_8xb512-amp-coslr-300e_in1k` | N/A | N/A | [config](mae_vit-base-p16_8xb512-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-300e_in1k/mae_vit-base-p16_8xb512-coslr-300e-fp16_in1k_20220829-c2cf66ba.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-300e_in1k/mae_vit-base-p16_8xb512-coslr-300e-fp16_in1k_20220829-c2cf66ba.json) |
| `mae_vit-base-p16_8xb512-amp-coslr-400e_in1k` | N/A | N/A | [config](mae_vit-base-p16_8xb512-amp-coslr-400e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-base-p16_8xb512-coslr-400e-fp16_in1k_20220825-bc79e40b.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-base-p16_8xb512-coslr-400e-fp16_in1k_20220825-bc79e40b.json) |
| `mae_vit-base-p16_8xb512-amp-coslr-800e_in1k` | N/A | N/A | [config](mae_vit-base-p16_8xb512-amp-coslr-800e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-base-p16_8xb512-coslr-800e-fp16_in1k_20220825-5d81fbc4.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-base-p16_8xb512-coslr-800e-fp16_in1k_20220825-5d81fbc4.json) |
| `mae_vit-base-p16_8xb512-amp-coslr-1600e_in1k` | N/A | N/A | [config](mae_vit-base-p16_8xb512-amp-coslr-1600e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.json) |
| `mae_vit-large-p16_8xb512-amp-coslr-400e_in1k` | N/A | N/A | [config](mae_vit-large-p16_8xb512-amp-coslr-400e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k_20220825-b11d0425.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k_20220825-b11d0425.json) |
| `mae_vit-large-p16_8xb512-amp-coslr-800e_in1k` | N/A | N/A | [config](mae_vit-large-p16_8xb512-amp-coslr-800e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k_20220825-df72726a.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k_20220825-df72726a.json) |
| `mae_vit-large-p16_8xb512-amp-coslr-1600e_in1k` | N/A | N/A | [config](mae_vit-large-p16_8xb512-amp-coslr-1600e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k_20220825-cc7e98c9.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k_20220825-cc7e98c9.json) |
| `mae_vit-huge-p16_8xb512-amp-coslr-1600e_in1k` | N/A | N/A | [config](mae_vit-huge-p14_8xb512-amp-coslr-1600e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k_20220916-ff848775.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k_20220916-ff848775.json) |
| `mae_vit-base-p16_8xb512-amp-coslr-300e_in1k` | 111.91 | 17.58 | [config](mae_vit-base-p16_8xb512-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-300e_in1k/mae_vit-base-p16_8xb512-coslr-300e-fp16_in1k_20220829-c2cf66ba.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-300e_in1k/mae_vit-base-p16_8xb512-coslr-300e-fp16_in1k_20220829-c2cf66ba.json) |
| `mae_vit-base-p16_8xb512-amp-coslr-400e_in1k` | 111.91 | 17.58 | [config](mae_vit-base-p16_8xb512-amp-coslr-400e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-base-p16_8xb512-coslr-400e-fp16_in1k_20220825-bc79e40b.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-base-p16_8xb512-coslr-400e-fp16_in1k_20220825-bc79e40b.json) |
| `mae_vit-base-p16_8xb512-amp-coslr-800e_in1k` | 111.91 | 17.58 | [config](mae_vit-base-p16_8xb512-amp-coslr-800e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-base-p16_8xb512-coslr-800e-fp16_in1k_20220825-5d81fbc4.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-base-p16_8xb512-coslr-800e-fp16_in1k_20220825-5d81fbc4.json) |
| `mae_vit-base-p16_8xb512-amp-coslr-1600e_in1k` | 111.91 | 17.58 | [config](mae_vit-base-p16_8xb512-amp-coslr-1600e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.json) |
| `mae_vit-large-p16_8xb512-amp-coslr-400e_in1k` | 329.54 | 61.60 | [config](mae_vit-large-p16_8xb512-amp-coslr-400e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k_20220825-b11d0425.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k_20220825-b11d0425.json) |
| `mae_vit-large-p16_8xb512-amp-coslr-800e_in1k` | 329.54 | 61.60 | [config](mae_vit-large-p16_8xb512-amp-coslr-800e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k_20220825-df72726a.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k_20220825-df72726a.json) |
| `mae_vit-large-p16_8xb512-amp-coslr-1600e_in1k` | 329.54 | 61.60 | [config](mae_vit-large-p16_8xb512-amp-coslr-1600e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k_20220825-cc7e98c9.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k_20220825-cc7e98c9.json) |
| `mae_vit-huge-p16_8xb512-amp-coslr-1600e_in1k` | 657.07 | 167.40 | [config](mae_vit-huge-p14_8xb512-amp-coslr-1600e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k_20220916-ff848775.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k_20220916-ff848775.json) |
### Image Classification on ImageNet-1k
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
| :---------------------------------------- | :------------------------------------------: | :--------: | :-------: | :-------: | :----------------------------------------: | :-------------------------------------------: |
| `vit-base-p16_mae-300e-pre_8xb2048-linear-coslr-90e_in1k` | [MAE 300-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-300e_in1k/mae_vit-base-p16_8xb512-coslr-300e-fp16_in1k_20220829-c2cf66ba.pth) | N/A | N/A | 60.80 | [config](benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py) | N/A |
| `vit-base-p16_mae-300e-pre_8xb128-coslr-100e_in1k` | [MAE 300-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-300e_in1k/mae_vit-base-p16_8xb512-coslr-300e-fp16_in1k_20220829-c2cf66ba.pth) | N/A | N/A | 83.10 | [config](benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py) | N/A |
| `vit-base-p16_mae-400e-pre_8xb2048-linear-coslr-90e_in1k` | [MAE 400-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-base-p16_8xb512-coslr-400e-fp16_in1k_20220825-bc79e40b.pth) | N/A | N/A | 62.50 | [config](benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py) | N/A |
| `vit-base-p16_mae-400e-pre_8xb128-coslr-100e_in1k` | [MAE 400-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-base-p16_8xb512-coslr-400e-fp16_in1k_20220825-bc79e40b.pth) | N/A | N/A | 83.30 | [config](benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py) | N/A |
| `vit-base-p16_mae-800e-pre_8xb2048-linear-coslr-90e_in1k` | [MAE 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-base-p16_8xb512-coslr-800e-fp16_in1k_20220825-5d81fbc4.pth) | N/A | N/A | 65.10 | [config](benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py) | N/A |
| `vit-base-p16_mae-800e-pre_8xb128-coslr-100e_in1k` | [MAE 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-base-p16_8xb512-coslr-800e-fp16_in1k_20220825-5d81fbc4.pth) | N/A | N/A | 83.30 | [config](benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py) | N/A |
| `vit-base-p16_mae-1600e-pre_8xb2048-linear-coslr-90e_in1k` | [MAE 1600-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.pth) | N/A | N/A | 67.10 | [config](benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py) | N/A |
| `vit-base-p16_mae-1600e-pre_8xb128-coslr-100e_in1k` | [MAE 1600-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.pth) | N/A | N/A | 83.50 | [config](benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20220825-cf70aa21.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20220825-cf70aa21.json) |
| `vit-large-p16_mae-400e-pre_8xb2048-linear-coslr-90e_in1k` | [MAE 400-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k_20220825-b11d0425.pth) | N/A | N/A | 70.70 | [config](benchmarks/vit-large-p16_8xb2048-linear-coslr-90e_in1k.py) | N/A |
| `vit-large-p16_mae-400e-pre_8xb128-coslr-50e_in1k` | [MAE 400-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k_20220825-b11d0425.pth) | N/A | N/A | 85.20 | [config](benchmarks/vit-large-p16_8xb128-coslr-50e_in1k.py) | N/A |
| `vit-large-p16_mae-800e-pre_8xb2048-linear-coslr-90e_in1k` | [MAE 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k_20220825-df72726a.pth) | N/A | N/A | 73.70 | [config](benchmarks/vit-large-p16_8xb2048-linear-coslr-90e_in1k.py) | N/A |
| `vit-large-p16_mae-800e-pre_8xb128-coslr-50e_in1k` | [MAE 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k_20220825-df72726a.pth) | N/A | N/A | 85.40 | [config](benchmarks/vit-large-p16_8xb128-coslr-50e_in1k.py) | N/A |
| `vit-large-p16_mae-1600e-pre_8xb2048-linear-coslr-90e_in1k` | [MAE 1600-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k_20220825-cc7e98c9.pth) | N/A | N/A | 75.50 | [config](benchmarks/vit-large-p16_8xb2048-linear-coslr-90e_in1k.py) | N/A |
| `vit-large-p16_mae-1600e-pre_8xb128-coslr-50e_in1k` | [MAE 1600-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k_20220825-cc7e98c9.pth) | N/A | N/A | 85.70 | [config](benchmarks/vit-large-p16_8xb128-coslr-50e_in1k.py) | N/A |
| `vit-huge-p14_mae-1600e-pre_8xb128-coslr-50e_in1k` | [MAE 1600-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k_20220916-ff848775.pth) | N/A | N/A | 86.90 | [config](benchmarks/vit-huge-p14_8xb128-coslr-50e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/vit-huge-p16_ft-8xb128-coslr-50e_in1k/vit-huge-p16_ft-8xb128-coslr-50e_in1k_20220916-0bfc9bfd.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/vit-huge-p16_ft-8xb128-coslr-50e_in1k/vit-huge-p16_ft-8xb128-coslr-50e_in1k_20220916-0bfc9bfd.json) |
| `vit-huge-p14_mae-1600e-pre_32xb8-coslr-50e_in1k-448px` | [MAE 1600-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k_20220916-ff848775.pth) | N/A | N/A | 87.30 | [config](benchmarks/vit-huge-p14_32xb8-coslr-50e_in1k-448px.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448_20220916-95b6a0ce.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448_20220916-95b6a0ce.json) |
| `vit-base-p16_mae-300e-pre_8xb128-coslr-100e_in1k` | [MAE 300-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-300e_in1k/mae_vit-base-p16_8xb512-coslr-300e-fp16_in1k_20220829-c2cf66ba.pth) | 86.57 | 17.58 | 83.10 | [config](benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py) | N/A |
| `vit-base-p16_mae-400e-pre_8xb128-coslr-100e_in1k` | [MAE 400-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-base-p16_8xb512-coslr-400e-fp16_in1k_20220825-bc79e40b.pth) | 86.57 | 17.58 | 83.30 | [config](benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py) | N/A |
| `vit-base-p16_mae-800e-pre_8xb128-coslr-100e_in1k` | [MAE 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-base-p16_8xb512-coslr-800e-fp16_in1k_20220825-5d81fbc4.pth) | 86.57 | 17.58 | 83.30 | [config](benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py) | N/A |
| `vit-base-p16_mae-1600e-pre_8xb128-coslr-100e_in1k` | [MAE 1600-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.pth) | 86.57 | 17.58 | 83.50 | [config](benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20220825-cf70aa21.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20220825-cf70aa21.json) |
| `vit-base-p16_mae-300e-pre_8xb2048-linear-coslr-90e_in1k` | [MAE 300-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-300e_in1k/mae_vit-base-p16_8xb512-coslr-300e-fp16_in1k_20220829-c2cf66ba.pth) | 86.57 | 17.58 | 60.80 | [config](benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py) | N/A |
| `vit-base-p16_mae-400e-pre_8xb2048-linear-coslr-90e_in1k` | [MAE 400-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-base-p16_8xb512-coslr-400e-fp16_in1k_20220825-bc79e40b.pth) | 86.57 | 17.58 | 62.50 | [config](benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py) | N/A |
| `vit-base-p16_mae-800e-pre_8xb2048-linear-coslr-90e_in1k` | [MAE 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-base-p16_8xb512-coslr-800e-fp16_in1k_20220825-5d81fbc4.pth) | 86.57 | 17.58 | 65.10 | [config](benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py) | N/A |
| `vit-base-p16_mae-1600e-pre_8xb2048-linear-coslr-90e_in1k` | [MAE 1600-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.pth) | 86.57 | 17.58 | 67.10 | [config](benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py) | N/A |
| `vit-large-p16_mae-400e-pre_8xb128-coslr-50e_in1k` | [MAE 400-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k_20220825-b11d0425.pth) | 304.32 | 61.60 | 85.20 | [config](benchmarks/vit-large-p16_8xb128-coslr-50e_in1k.py) | N/A |
| `vit-large-p16_mae-800e-pre_8xb128-coslr-50e_in1k` | [MAE 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k_20220825-df72726a.pth) | 304.32 | 61.60 | 85.40 | [config](benchmarks/vit-large-p16_8xb128-coslr-50e_in1k.py) | N/A |
| `vit-large-p16_mae-1600e-pre_8xb128-coslr-50e_in1k` | [MAE 1600-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k_20220825-cc7e98c9.pth) | 304.32 | 61.60 | 85.70 | [config](benchmarks/vit-large-p16_8xb128-coslr-50e_in1k.py) | N/A |
| `vit-large-p16_mae-400e-pre_8xb2048-linear-coslr-90e_in1k` | [MAE 400-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k_20220825-b11d0425.pth) | 304.33 | 61.60 | 70.70 | [config](benchmarks/vit-large-p16_8xb2048-linear-coslr-90e_in1k.py) | N/A |
| `vit-large-p16_mae-800e-pre_8xb2048-linear-coslr-90e_in1k` | [MAE 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k_20220825-df72726a.pth) | 304.33 | 61.60 | 73.70 | [config](benchmarks/vit-large-p16_8xb2048-linear-coslr-90e_in1k.py) | N/A |
| `vit-large-p16_mae-1600e-pre_8xb2048-linear-coslr-90e_in1k` | [MAE 1600-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k_20220825-cc7e98c9.pth) | 304.33 | 61.60 | 75.50 | [config](benchmarks/vit-large-p16_8xb2048-linear-coslr-90e_in1k.py) | N/A |
| `vit-huge-p14_mae-1600e-pre_8xb128-coslr-50e_in1k` | [MAE 1600-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k_20220916-ff848775.pth) | 632.04 | 167.40 | 86.90 | [config](benchmarks/vit-huge-p14_8xb128-coslr-50e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/vit-huge-p16_ft-8xb128-coslr-50e_in1k/vit-huge-p16_ft-8xb128-coslr-50e_in1k_20220916-0bfc9bfd.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/vit-huge-p16_ft-8xb128-coslr-50e_in1k/vit-huge-p16_ft-8xb128-coslr-50e_in1k_20220916-0bfc9bfd.json) |
| `vit-huge-p14_mae-1600e-pre_32xb8-coslr-50e_in1k-448px` | [MAE 1600-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k_20220916-ff848775.pth) | 633.03 | 732.13 | 87.30 | [config](benchmarks/vit-huge-p14_32xb8-coslr-50e_in1k-448px.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448_20220916-95b6a0ce.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448_20220916-95b6a0ce.json) |
## Citation

View File

@ -8,282 +8,360 @@ Collections:
Architecture:
- ViT
Paper:
URL: https://arxiv.org/abs/2111.06377
Title: "Masked Autoencoders Are Scalable Vision Learners"
Title: Masked Autoencoders Are Scalable Vision Learners
URL: https://arxiv.org/abs/2111.06377
README: configs/mae/README.md
Models:
- Name: mae_vit-base-p16_8xb512-amp-coslr-300e_in1k
In Collection: MAE
Metadata:
Epochs: 300
Batch Size: 4096
FLOPs: 17581972224
Parameters: 111907840
Training Data: ImageNet-1k
In Collection: MAE
Results: null
Config: configs/mae/mae_vit-base-p16_8xb512-amp-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-300e_in1k/mae_vit-base-p16_8xb512-coslr-300e-fp16_in1k_20220829-c2cf66ba.pth
Config: configs/mae/mae_vit-base-p16_8xb512-amp-coslr-300e_in1k.py
Downstream:
- vit-base-p16_mae-300e-pre_8xb2048-linear-coslr-90e_in1k
- vit-base-p16_mae-300e-pre_8xb128-coslr-100e_in1k
- Name: vit-base-p16_mae-300e-pre_8xb2048-linear-coslr-90e_in1k
In Collection: MAE
- Name: mae_vit-base-p16_8xb512-amp-coslr-400e_in1k
Metadata:
Epochs: 90
Batch Size: 16384
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 60.8
Config: configs/mae/benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py
- Name: vit-base-p16_mae-300e-pre_8xb128-coslr-100e_in1k
Epochs: 400
Batch Size: 4096
FLOPs: 17581972224
Parameters: 111907840
Training Data: ImageNet-1k
In Collection: MAE
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-base-p16_8xb512-coslr-400e-fp16_in1k_20220825-bc79e40b.pth
Config: configs/mae/mae_vit-base-p16_8xb512-amp-coslr-400e_in1k.py
Downstream:
- vit-base-p16_mae-400e-pre_8xb2048-linear-coslr-90e_in1k
- vit-base-p16_mae-400e-pre_8xb128-coslr-100e_in1k
- Name: mae_vit-base-p16_8xb512-amp-coslr-800e_in1k
Metadata:
Epochs: 800
Batch Size: 4096
FLOPs: 17581972224
Parameters: 111907840
Training Data: ImageNet-1k
In Collection: MAE
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-base-p16_8xb512-coslr-800e-fp16_in1k_20220825-5d81fbc4.pth
Config: configs/mae/mae_vit-base-p16_8xb512-amp-coslr-800e_in1k.py
Downstream:
- vit-base-p16_mae-800e-pre_8xb2048-linear-coslr-90e_in1k
- vit-base-p16_mae-800e-pre_8xb128-coslr-100e_in1k
- Name: mae_vit-base-p16_8xb512-amp-coslr-1600e_in1k
Metadata:
Epochs: 1600
Batch Size: 4096
FLOPs: 17581972224
Parameters: 111907840
Training Data: ImageNet-1k
In Collection: MAE
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.pth
Config: configs/mae/mae_vit-base-p16_8xb512-amp-coslr-1600e_in1k.py
Downstream:
- vit-base-p16_mae-1600e-pre_8xb2048-linear-coslr-90e_in1k
- vit-base-p16_mae-1600e-pre_8xb128-coslr-100e_in1k
- Name: mae_vit-large-p16_8xb512-amp-coslr-400e_in1k
Metadata:
Epochs: 400
Batch Size: 4096
FLOPs: 61603111936
Parameters: 329541888
Training Data: ImageNet-1k
In Collection: MAE
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k_20220825-b11d0425.pth
Config: configs/mae/mae_vit-large-p16_8xb512-amp-coslr-400e_in1k.py
Downstream:
- vit-large-p16_mae-400e-pre_8xb2048-linear-coslr-90e_in1k
- vit-large-p16_mae-400e-pre_8xb128-coslr-50e_in1k
- Name: mae_vit-large-p16_8xb512-amp-coslr-800e_in1k
Metadata:
Epochs: 800
Batch Size: 4096
FLOPs: 61603111936
Parameters: 329541888
Training Data: ImageNet-1k
In Collection: MAE
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k_20220825-df72726a.pth
Config: configs/mae/mae_vit-large-p16_8xb512-amp-coslr-800e_in1k.py
Downstream:
- vit-large-p16_mae-800e-pre_8xb2048-linear-coslr-90e_in1k
- vit-large-p16_mae-800e-pre_8xb128-coslr-50e_in1k
- Name: mae_vit-large-p16_8xb512-amp-coslr-1600e_in1k
Metadata:
Epochs: 1600
Batch Size: 4096
FLOPs: 61603111936
Parameters: 329541888
Training Data: ImageNet-1k
In Collection: MAE
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k_20220825-cc7e98c9.pth
Config: configs/mae/mae_vit-large-p16_8xb512-amp-coslr-1600e_in1k.py
Downstream:
- vit-large-p16_mae-1600e-pre_8xb2048-linear-coslr-90e_in1k
- vit-large-p16_mae-1600e-pre_8xb128-coslr-50e_in1k
- Name: mae_vit-huge-p16_8xb512-amp-coslr-1600e_in1k
Metadata:
Epochs: 1600
Batch Size: 4096
FLOPs: 167400741120
Parameters: 657074508
Training Data: ImageNet-1k
In Collection: MAE
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k_20220916-ff848775.pth
Config: configs/mae/mae_vit-huge-p14_8xb512-amp-coslr-1600e_in1k.py
Downstream:
- vit-huge-p14_mae-1600e-pre_8xb128-coslr-50e_in1k
- vit-huge-p14_mae-1600e-pre_32xb8-coslr-50e_in1k-448px
- Name: vit-base-p16_mae-300e-pre_8xb128-coslr-100e_in1k
Metadata:
Epochs: 100
Batch Size: 1024
FLOPs: 17581215744
Parameters: 86566120
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.1
Weights: null
Config: configs/mae/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py
- Name: mae_vit-base-p16_8xb512-amp-coslr-400e_in1k
In Collection: MAE
Metadata:
Epochs: 400
Batch Size: 4096
Results: null
Config: configs/mae/mae_vit-base-p16_8xb512-amp-coslr-400e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-base-p16_8xb512-coslr-400e-fp16_in1k_20220825-bc79e40b.pth
Downstream:
- vit-base-p16_mae-400e-pre_8xb2048-linear-coslr-90e_in1k
- vit-base-p16_mae-400e-pre_8xb128-coslr-100e_in1k
- Name: vit-base-p16_mae-400e-pre_8xb2048-linear-coslr-90e_in1k
In Collection: MAE
Metadata:
Epochs: 90
Batch Size: 16384
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 62.5
Config: configs/mae/benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py
- Name: vit-base-p16_mae-400e-pre_8xb128-coslr-100e_in1k
In Collection: MAE
Metadata:
Epochs: 100
Batch Size: 1024
FLOPs: 17581215744
Parameters: 86566120
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.3
Weights: null
Config: configs/mae/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py
- Name: mae_vit-base-p16_8xb512-amp-coslr-800e_in1k
In Collection: MAE
Metadata:
Epochs: 800
Batch Size: 4096
Results: null
Config: configs/mae/mae_vit-base-p16_8xb512-amp-coslr-800e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-base-p16_8xb512-coslr-800e-fp16_in1k_20220825-5d81fbc4.pth
Downstream:
- vit-base-p16_mae-800e-pre_8xb2048-linear-coslr-90e_in1k
- vit-base-p16_mae-800e-pre_8xb128-coslr-100e_in1k
- Name: vit-base-p16_mae-800e-pre_8xb2048-linear-coslr-90e_in1k
In Collection: MAE
Metadata:
Epochs: 90
Batch Size: 16384
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 65.1
Config: configs/mae/benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py
- Name: vit-base-p16_mae-800e-pre_8xb128-coslr-100e_in1k
In Collection: MAE
Metadata:
Epochs: 100
Batch Size: 1024
FLOPs: 17581215744
Parameters: 86566120
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.3
Weights: null
Config: configs/mae/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py
- Name: mae_vit-base-p16_8xb512-amp-coslr-1600e_in1k
In Collection: MAE
Metadata:
Epochs: 1600
Batch Size: 4096
Results: null
Config: configs/mae/mae_vit-base-p16_8xb512-amp-coslr-1600e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k_20220825-f7569ca2.pth
Downstream:
- vit-base-p16_mae-1600e-pre_8xb2048-linear-coslr-90e_in1k
- vit-base-p16_mae-1600e-pre_8xb128-coslr-100e_in1k
- Name: vit-base-p16_mae-1600e-pre_8xb2048-linear-coslr-90e_in1k
In Collection: MAE
Metadata:
Epochs: 90
Batch Size: 16384
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 67.1
Config: configs/mae/benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py
- Name: vit-base-p16_mae-1600e-pre_8xb128-coslr-100e_in1k
In Collection: MAE
Metadata:
Epochs: 100
Batch Size: 1024
FLOPs: 17581215744
Parameters: 86566120
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.5
Config: configs/mae/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-base-p16_8xb512-fp16-coslr-1600e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20220825-cf70aa21.pth
- Name: mae_vit-large-p16_8xb512-amp-coslr-400e_in1k
In Collection: MAE
Metadata:
Epochs: 400
Batch Size: 4096
Results: null
Config: configs/mae/mae_vit-large-p16_8xb512-amp-coslr-400e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-400e_in1k_20220825-b11d0425.pth
Downstream:
- vit-large-p16_mae-400e-pre_8xb2048-linear-coslr-90e_in1k
- vit-large-p16_mae-400e-pre_8xb128-coslr-50e_in1k
- Name: vit-large-p16_mae-400e-pre_8xb2048-linear-coslr-90e_in1k
In Collection: MAE
Config: configs/mae/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py
- Name: vit-base-p16_mae-300e-pre_8xb2048-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 16384
FLOPs: 17581972992
Parameters: 86567656
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 70.7
Config: configs/mae/benchmarks/vit-large-p16_8xb2048-linear-coslr-90e_in1k.py
- Name: vit-large-p16_mae-400e-pre_8xb128-coslr-50e_in1k
Top 1 Accuracy: 60.8
Weights: null
Config: configs/mae/benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py
- Name: vit-base-p16_mae-400e-pre_8xb2048-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 16384
FLOPs: 17581972992
Parameters: 86567656
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 62.5
Weights: null
Config: configs/mae/benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py
- Name: vit-base-p16_mae-800e-pre_8xb2048-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 16384
FLOPs: 17581972992
Parameters: 86567656
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 65.1
Weights: null
Config: configs/mae/benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py
- Name: vit-base-p16_mae-1600e-pre_8xb2048-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 16384
FLOPs: 17581972992
Parameters: 86567656
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 67.1
Weights: null
Config: configs/mae/benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py
- Name: vit-large-p16_mae-400e-pre_8xb128-coslr-50e_in1k
Metadata:
Epochs: 50
Batch Size: 1024
FLOPs: 61602103296
Parameters: 304324584
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.2
Weights: null
Config: configs/mae/benchmarks/vit-large-p16_8xb128-coslr-50e_in1k.py
- Name: mae_vit-large-p16_8xb512-amp-coslr-800e_in1k
In Collection: MAE
Metadata:
Epochs: 800
Batch Size: 4096
Results: null
Config: configs/mae/mae_vit-large-p16_8xb512-amp-coslr-800e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-800e_in1k_20220825-df72726a.pth
Downstream:
- vit-large-p16_mae-800e-pre_8xb2048-linear-coslr-90e_in1k
- vit-large-p16_mae-800e-pre_8xb128-coslr-50e_in1k
- Name: vit-large-p16_mae-800e-pre_8xb2048-linear-coslr-90e_in1k
In Collection: MAE
Metadata:
Epochs: 90
Batch Size: 16384
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 73.7
Config: configs/mae/benchmarks/vit-large-p16_8xb2048-linear-coslr-90e_in1k.py
- Name: vit-large-p16_mae-800e-pre_8xb128-coslr-50e_in1k
In Collection: MAE
Metadata:
Epochs: 50
Batch Size: 1024
FLOPs: 61602103296
Parameters: 304324584
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.4
Weights: null
Config: configs/mae/benchmarks/vit-large-p16_8xb128-coslr-50e_in1k.py
- Name: mae_vit-large-p16_8xb512-amp-coslr-1600e_in1k
In Collection: MAE
Metadata:
Epochs: 1600
Batch Size: 4096
Results: null
Config: configs/mae/mae_vit-large-p16_8xb512-amp-coslr-1600e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-large-p16_8xb512-fp16-coslr-1600e_in1k_20220825-cc7e98c9.pth
Downstream:
- vit-large-p16_mae-1600e-pre_8xb2048-linear-coslr-90e_in1k
- vit-large-p16_mae-1600e-pre_8xb128-coslr-50e_in1k
- Name: vit-large-p16_mae-1600e-pre_8xb2048-linear-coslr-90e_in1k
In Collection: MAE
Metadata:
Epochs: 90
Batch Size: 16384
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 75.5
Config: configs/mae/benchmarks/vit-large-p16_8xb2048-linear-coslr-90e_in1k.py
- Name: vit-large-p16_mae-1600e-pre_8xb128-coslr-50e_in1k
In Collection: MAE
Metadata:
Epochs: 50
Batch Size: 1024
FLOPs: 61602103296
Parameters: 304324584
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.7
Weights: null
Config: configs/mae/benchmarks/vit-large-p16_8xb128-coslr-50e_in1k.py
- Name: mae_vit-huge-p16_8xb512-amp-coslr-1600e_in1k
In Collection: MAE
- Name: vit-large-p16_mae-400e-pre_8xb2048-linear-coslr-90e_in1k
Metadata:
Epochs: 1600
Batch Size: 4096
Results: null
Config: configs/mae/mae_vit-huge-p14_8xb512-amp-coslr-1600e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k_20220916-ff848775.pth
Downstream:
- vit-huge-p14_mae-1600e-pre_8xb128-coslr-50e_in1k
- vit-huge-p14_mae-1600e-pre_32xb8-coslr-50e_in1k-448px
- Name: vit-huge-p14_mae-1600e-pre_8xb128-coslr-50e_in1k
Epochs: 90
Batch Size: 16384
FLOPs: 61603112960
Parameters: 304326632
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 70.7
Weights: null
Config: configs/mae/benchmarks/vit-large-p16_8xb2048-linear-coslr-90e_in1k.py
- Name: vit-large-p16_mae-800e-pre_8xb2048-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 16384
FLOPs: 61603112960
Parameters: 304326632
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 73.7
Weights: null
Config: configs/mae/benchmarks/vit-large-p16_8xb2048-linear-coslr-90e_in1k.py
- Name: vit-large-p16_mae-1600e-pre_8xb2048-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 16384
FLOPs: 61603112960
Parameters: 304326632
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 75.5
Weights: null
Config: configs/mae/benchmarks/vit-large-p16_8xb2048-linear-coslr-90e_in1k.py
- Name: vit-huge-p14_mae-1600e-pre_8xb128-coslr-50e_in1k
Metadata:
Epochs: 50
Batch Size: 1024
FLOPs: 167399096320
Parameters: 632043240
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 86.9
Config: configs/mae/benchmarks/vit-huge-p14_8xb128-coslr-50e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/vit-huge-p16_ft-8xb128-coslr-50e_in1k/vit-huge-p16_ft-8xb128-coslr-50e_in1k_20220916-0bfc9bfd.pth
Config: configs/mae/benchmarks/vit-huge-p14_8xb128-coslr-50e_in1k.py
- Name: vit-huge-p14_mae-1600e-pre_32xb8-coslr-50e_in1k-448px
In Collection: MAE
Metadata:
Epochs: 50
Batch Size: 256
FLOPs: 732131983360
Parameters: 633026280
Training Data: ImageNet-1k
In Collection: MAE
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 87.3
Config: configs/mae/benchmarks/vit-huge-p14_32xb8-coslr-50e_in1k-448px.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448/vit-huge-p16_ft-32xb8-coslr-50e_in1k-448_20220916-95b6a0ce.pth
Config: configs/mae/benchmarks/vit-huge-p14_32xb8-coslr-50e_in1k-448px.py

View File

@ -65,13 +65,13 @@ python tools/test.py configs/maskfeat/benchmarks/vit-base-p16_8xb256-coslr-100e_
| Model | Params (M) | Flops (G) | Config | Download |
| :------------------------------------------------- | :--------: | :-------: | :-----------------------------------------------------------: | :--------------------------------------------------------------------: |
| `maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k` | N/A | N/A | [config](maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221101-6dfc8bf3.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221101-6dfc8bf3.json) |
| `maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k` | 85.88 | 17.58 | [config](maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221101-6dfc8bf3.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221101-6dfc8bf3.json) |
### Image Classification on ImageNet-1k
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
| :---------------------------------------- | :------------------------------------------: | :--------: | :-------: | :-------: | :----------------------------------------: | :-------------------------------------------: |
| `vit-base-p16_maskfeat-pre_8xb256-coslr-100e_in1k` | [MASKFEAT](https://download.openmmlab.com/mmselfsup/1.x/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221101-6dfc8bf3.pth) | N/A | N/A | 83.40 | [config](benchmarks/vit-base-p16_8xb256-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb256-coslr-100e_in1k/vit-base-p16_ft-8xb256-coslr-100e_in1k_20221028-5134431c.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb256-coslr-100e_in1k/vit-base-p16_ft-8xb256-coslr-100e_in1k_20221028-5134431c.json) |
| `vit-base-p16_maskfeat-pre_8xb256-coslr-100e_in1k` | [MASKFEAT](https://download.openmmlab.com/mmselfsup/1.x/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221101-6dfc8bf3.pth) | 86.57 | 17.58 | 83.40 | [config](benchmarks/vit-base-p16_8xb256-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb256-coslr-100e_in1k/vit-base-p16_ft-8xb256-coslr-100e_in1k_20221028-5134431c.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb256-coslr-100e_in1k/vit-base-p16_ft-8xb256-coslr-100e_in1k_20221028-5134431c.json) |
## Citation

View File

@ -8,30 +8,36 @@ Collections:
Architecture:
- ViT
Paper:
URL: https://arxiv.org/abs/2112.09133v1
Title: "Masked Feature Prediction for Self-Supervised Visual Pre-Training"
Title: Masked Feature Prediction for Self-Supervised Visual Pre-Training
URL: https://arxiv.org/abs/2112.09133v1
README: configs/maskfeat/README.md
Models:
- Name: maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k
In Collection: MaskFeat
Metadata:
Epochs: 300
Batch Size: 2048
FLOPs: 17581972224
Parameters: 85882692
Training Data: ImageNet-1k
In Collection: MaskFeat
Results: null
Config: configs/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221101-6dfc8bf3.pth
Config: configs/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k.py
Downstream:
- vit-base-p16_maskfeat-pre_8xb256-coslr-100e_in1k
- Name: vit-base-p16_maskfeat-pre_8xb256-coslr-100e_in1k
In Collection: MaskFeat
Metadata:
Epochs: 100
Batch Size: 2048
FLOPs: 17581215744
Parameters: 86566120
Training Data: ImageNet-1k
In Collection: MaskFeat
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.4
Config: configs/maskfeat/benchmarks/vit-base-p16_8xb256-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/maskfeat/maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb256-coslr-100e_in1k/vit-base-p16_ft-8xb256-coslr-100e_in1k_20221028-5134431c.pth
Config: configs/maskfeat/benchmarks/vit-base-p16_8xb256-coslr-100e_in1k.py

View File

@ -83,14 +83,14 @@ python tools/test.py configs/milan/benchmarks/vit-base-p16_8xb128-coslr-100e_in1
| Model | Params (M) | Flops (G) | Config | Download |
| :----------------------------------------------- | :--------: | :-------: | :---------------------------------------------------------: | :------------------------------------------------------------------------: |
| `milan_vit-base-p16_16xb256-amp-coslr-400e_in1k` | N/A | N/A | [config](milan_vit-base-p16_16xb256-amp-coslr-400e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k_20221129-180922e8.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k_20221129-180922e8.json) |
| `milan_vit-base-p16_16xb256-amp-coslr-400e_in1k` | 111.91 | 17.58 | [config](milan_vit-base-p16_16xb256-amp-coslr-400e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k_20221129-180922e8.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k_20221129-180922e8.json) |
### Image Classification on ImageNet-1k
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
| :---------------------------------------- | :------------------------------------------: | :--------: | :-------: | :-------: | :----------------------------------------: | :-------------------------------------------: |
| `vit-base-p16_milan-pre_8xb128-coslr-100e_in1k` | [MILAN](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k_20221129-180922e8.pth) | N/A | N/A | 85.30 | [config](benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k-milan_20221129-74ac94fa.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k-milan_20221129-74ac94fa.json) |
| `vit-base-p16_milan-pre_8xb2048-linear-coslr-100e_in1k` | [MILAN](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k_20221129-180922e8.pth) | N/A | N/A | 78.90 | [config](benchmarks/vit-base-p16_8xb2048-linear-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221129-03f26f85.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221129-03f26f85.json) |
| `vit-base-p16_milan-pre_8xb128-coslr-100e_in1k` | [MILAN](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k_20221129-180922e8.pth) | 86.57 | 17.58 | 85.30 | [config](benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k-milan_20221129-74ac94fa.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k-milan_20221129-74ac94fa.json) |
| `vit-base-p16_milan-pre_8xb2048-linear-coslr-100e_in1k` | [MILAN](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k_20221129-180922e8.pth) | 86.57 | 17.58 | 78.90 | [config](benchmarks/vit-base-p16_8xb2048-linear-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221129-03f26f85.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221129-03f26f85.json) |
## Citation

View File

@ -8,44 +8,52 @@ Collections:
Architecture:
- ViT
Paper:
URL: https://arxiv.org/pdf/2208.06049
Title: "MILAN: Masked Image Pretraining on Language Assisted Representation"
Title: 'MILAN: Masked Image Pretraining on Language Assisted Representation'
URL: https://arxiv.org/pdf/2208.06049
README: configs/milan/README.md
Models:
- Name: milan_vit-base-p16_16xb256-amp-coslr-400e_in1k
In Collection: MILAN
Metadata:
Epochs: 400
Batch Size: 4096
FLOPs: 17581972224
Parameters: 111907584
Training Data: ImageNet-1k
In Collection: MILAN
Results: null
Config: configs/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k_20221129-180922e8.pth
Config: configs/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k.py
Downstream:
- vit-base-p16_milan-pre_8xb128-coslr-100e_in1k
- vit-base-p16_milan-pre_8xb2048-linear-coslr-100e_in1k
- Name: vit-base-p16_milan-pre_8xb128-coslr-100e_in1k
In Collection: MILAN
Metadata:
Epochs: 100
Batch Size: 1024
FLOPs: 17581215744
Parameters: 86566120
Training Data: ImageNet-1k
In Collection: MILAN
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.3
Config: configs/milan/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k-milan_20221129-74ac94fa.pth
Config: configs/milan/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py
- Name: vit-base-p16_milan-pre_8xb2048-linear-coslr-100e_in1k
In Collection: MILAN
Metadata:
Epochs: 100
Batch Size: 16384
FLOPs: 17581972992
Parameters: 86567656
Training Data: ImageNet-1k
In Collection: MILAN
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.9
Config: configs/milan/benchmarks/vit-base-p16_8xb2048-linear-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221129-03f26f85.pth
Config: configs/milan/benchmarks/vit-base-p16_8xb2048-linear-coslr-100e_in1k.py

View File

@ -82,13 +82,13 @@ python tools/test.py configs/mixmim/benchmarks/mixmim-base_8xb128-coslr-100e_in1
| Model | Params (M) | Flops (G) | Config | Download |
| :------------------------------------------- | :--------: | :-------: | :-----------------------------------------------------: | :--------------------------------------------------------------------------------: |
| `mixmim_mixmim-base_16xb128-coslr-300e_in1k` | N/A | N/A | [config](mixmim_mixmim-base_16xb128-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_16xb128-coslr-300e_in1k_20221208-44fe8d2c.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_16xb128-coslr-300e_in1k_20221208-44fe8d2c.json) |
| `mixmim_mixmim-base_16xb128-coslr-300e_in1k` | 114.67 | 16.35 | [config](mixmim_mixmim-base_16xb128-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_16xb128-coslr-300e_in1k_20221208-44fe8d2c.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_16xb128-coslr-300e_in1k_20221208-44fe8d2c.json) |
### Image Classification on ImageNet-1k
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
| :---------------------------------------- | :------------------------------------------: | :--------: | :-------: | :-------: | :----------------------------------------: | :-------------------------------------------: |
| `mixmim-base_mixmim-pre_8xb128-coslr-100e_in1k` | [MIXMIM](https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_16xb128-coslr-300e_in1k_20221208-44fe8d2c.pth) | N/A | N/A | 84.63 | [config](benchmarks/mixmim-base_8xb128-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_ft-8xb128-coslr-100e_in1k/mixmim-base-p16_ft-8xb128-coslr-100e_in1k_20221208-41ecada9.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_ft-8xb128-coslr-100e_in1k/mixmim-base-p16_ft-8xb128-coslr-100e_in1k_20221208-41ecada9.json) |
| `mixmim-base_mixmim-pre_8xb128-coslr-100e_in1k` | [MIXMIM](https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_16xb128-coslr-300e_in1k_20221208-44fe8d2c.pth) | 88.34 | 16.35 | 84.63 | [config](benchmarks/mixmim-base_8xb128-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_ft-8xb128-coslr-100e_in1k/mixmim-base-p16_ft-8xb128-coslr-100e_in1k_20221208-41ecada9.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_ft-8xb128-coslr-100e_in1k/mixmim-base-p16_ft-8xb128-coslr-100e_in1k_20221208-41ecada9.json) |
## Citation

View File

@ -12,7 +12,8 @@ Collections:
- Scaled Dot-Product Attention
- Tanh Activation
Paper:
Title: 'MixMIM: Mixed and Masked Image Modeling for Efficient Visual Representation Learning'
Title: 'MixMIM: Mixed and Masked Image Modeling for Efficient Visual Representation
Learning'
URL: https://arxiv.org/abs/2205.13137
README: configs/mixmim/README.md
Code:
@ -21,24 +22,30 @@ Collections:
Models:
- Name: mixmim_mixmim-base_16xb128-coslr-300e_in1k
In Collection: MixMIM
Metadata:
Epochs: 300
Batch Size: 2048
FLOPs: 16351906816
Parameters: 114665784
Training Data: ImageNet-1k
In Collection: MixMIM
Results: null
Config: configs/mixmim/mixmim_mixmim-base_16xb128-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_16xb128-coslr-300e_in1k_20221208-44fe8d2c.pth
Config: configs/mixmim/mixmim_mixmim-base_16xb128-coslr-300e_in1k.py
Downstream:
- mixmim-base_mixmim-pre_8xb128-coslr-100e_in1k
- Name: mixmim-base_mixmim-pre_8xb128-coslr-100e_in1k
In Collection: MixMIM
Metadata:
Epochs: 100
Batch Size: 1024
FLOPs: 16351906816
Parameters: 88344352
Training Data: ImageNet-1k
In Collection: MixMIM
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 84.63
Config: configs/mixmim/benchmarks/mixmim-base_8xb128-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mixmim/mixmim-base-p16_16xb128-coslr-300e_in1k/mixmim-base-p16_ft-8xb128-coslr-100e_in1k/mixmim-base-p16_ft-8xb128-coslr-100e_in1k_20221208-41ecada9.pth
Config: configs/mixmim/benchmarks/mixmim-base_8xb128-coslr-100e_in1k.py

View File

@ -65,13 +65,13 @@ python tools/test.py configs/mocov2/benchmarks/resnet50_8xb32-linear-steplr-100e
| Model | Params (M) | Flops (G) | Config | Download |
| :-------------------------------------- | :--------: | :-------: | :------------------------------------------------: | :------------------------------------------------------------------------------------------: |
| `mocov2_resnet50_8xb32-coslr-200e_in1k` | N/A | N/A | [config](mocov2_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/mocov2_resnet50_8xb32-coslr-200e_in1k_20220825-b6d23c86.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/mocov2_resnet50_8xb32-coslr-200e_in1k_20220825-b6d23c86.json) |
| `mocov2_resnet50_8xb32-coslr-200e_in1k` | 55.93 | 4.11 | [config](mocov2_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/mocov2_resnet50_8xb32-coslr-200e_in1k_20220825-b6d23c86.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/mocov2_resnet50_8xb32-coslr-200e_in1k_20220825-b6d23c86.json) |
### Image Classification on ImageNet-1k
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
| :---------------------------------------- | :------------------------------------------: | :--------: | :-------: | :-------: | :----------------------------------------: | :-------------------------------------------: |
| `resnet50_mocov2-pre_8xb32-linear-steplr-100e_in1k` | [MOCOV2](https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/mocov2_resnet50_8xb32-coslr-200e_in1k_20220825-b6d23c86.pth) | N/A | N/A | 67.50 | [config](benchmarks/resnet50_8xb32-linear-steplr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-994c4128.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-994c4128.json) |
| `resnet50_mocov2-pre_8xb32-linear-steplr-100e_in1k` | [MOCOV2](https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/mocov2_resnet50_8xb32-coslr-200e_in1k_20220825-b6d23c86.pth) | 25.56 | 4.11 | 67.50 | [config](benchmarks/resnet50_8xb32-linear-steplr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-994c4128.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-994c4128.json) |
## Citation

View File

@ -10,30 +10,36 @@ Collections:
- ResNet
- MoCo
Paper:
URL: https://arxiv.org/abs/2003.04297
Title: "Improved Baselines with Momentum Contrastive Learning"
Title: Improved Baselines with Momentum Contrastive Learning
URL: https://arxiv.org/abs/2003.04297
README: configs/mocov2/README.md
Models:
- Name: mocov2_resnet50_8xb32-coslr-200e_in1k
In Collection: MoCoV2
Metadata:
Epochs: 200
Batch Size: 256
FLOPs: 4109364224
Parameters: 55933312
Training Data: ImageNet-1k
In Collection: MoCoV2
Results: null
Config: configs/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/mocov2_resnet50_8xb32-coslr-200e_in1k_20220825-b6d23c86.pth
Config: configs/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k.py
Downstream:
- resnet50_mocov2-pre_8xb32-linear-steplr-100e_in1k
- Name: resnet50_mocov2-pre_8xb32-linear-steplr-100e_in1k
In Collection: MoCoV2
Metadata:
Epochs: 100
Batch Size: 256
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: MoCoV2
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 67.5
Config: configs/mocov2/benchmarks/resnet50_8xb32-linear-steplr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-994c4128.pth
Config: configs/mocov2/benchmarks/resnet50_8xb32-linear-steplr-100e_in1k.py

View File

@ -65,24 +65,24 @@ python tools/test.py configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_
| Model | Params (M) | Flops (G) | Config | Download |
| :------------------------------------------------- | :--------: | :-------: | :-----------------------------------------------------------: | :--------------------------------------------------------------------: |
| `mocov3_resnet50_8xb512-amp-coslr-100e_in1k` | N/A | N/A | [config](mocov3_resnet50_8xb512-amp-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_20220927-f1144efa.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_20220927-f1144efa.json) |
| `mocov3_resnet50_8xb512-amp-coslr-300e_in1k` | N/A | N/A | [config](mocov3_resnet50_8xb512-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/mocov3_resnet50_8xb512-amp-coslr-300e_in1k_20220927-1e4f3304.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/mocov3_resnet50_8xb512-amp-coslr-300e_in1k_20220927-1e4f3304.json) |
| `mocov3_resnet50_8xb512-amp-coslr-800e_in1k` | N/A | N/A | [config](mocov3_resnet50_8xb512-amp-coslr-800e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/mocov3_resnet50_8xb512-amp-coslr-800e_in1k_20220927-e043f51a.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/mocov3_resnet50_8xb512-amp-coslr-800e_in1k_20220927-e043f51a.json) |
| `mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k` | N/A | N/A | [config](mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k-224_20220826-08bc52f7.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k-224_20220826-08bc52f7.json) |
| `mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k` | N/A | N/A | [config](mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k-224_20220826-25213343.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k-224_20220826-25213343.json) |
| `mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k` | N/A | N/A | [config](mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k-224_20220829-9b88a442.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k-224_20220829-9b88a442.json) |
| `mocov3_resnet50_8xb512-amp-coslr-100e_in1k` | 68.01 | 4.11 | [config](mocov3_resnet50_8xb512-amp-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_20220927-f1144efa.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_20220927-f1144efa.json) |
| `mocov3_resnet50_8xb512-amp-coslr-300e_in1k` | 68.01 | 4.11 | [config](mocov3_resnet50_8xb512-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/mocov3_resnet50_8xb512-amp-coslr-300e_in1k_20220927-1e4f3304.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/mocov3_resnet50_8xb512-amp-coslr-300e_in1k_20220927-1e4f3304.json) |
| `mocov3_resnet50_8xb512-amp-coslr-800e_in1k` | 68.01 | 4.11 | [config](mocov3_resnet50_8xb512-amp-coslr-800e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/mocov3_resnet50_8xb512-amp-coslr-800e_in1k_20220927-e043f51a.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/mocov3_resnet50_8xb512-amp-coslr-800e_in1k_20220927-e043f51a.json) |
| `mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k` | 84.27 | 4.61 | [config](mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k-224_20220826-08bc52f7.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k-224_20220826-08bc52f7.json) |
| `mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k` | 215.68 | 17.58 | [config](mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k-224_20220826-25213343.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k-224_20220826-25213343.json) |
| `mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k` | 652.78 | 61.60 | [config](mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k-224_20220829-9b88a442.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k-224_20220829-9b88a442.json) |
### Image Classification on ImageNet-1k
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
| :---------------------------------------- | :------------------------------------------: | :--------: | :-------: | :-------: | :----------------------------------------: | :-------------------------------------------: |
| `resnet50_mocov3-100e-pre_8xb128-linear-coslr-90e_in1k` | [MOCOV3 100-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_20220927-f1144efa.pth) | N/A | N/A | 69.60 | [config](benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-8f7d937e.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-8f7d937e.json) |
| `resnet50_mocov3-300e-pre_8xb128-linear-coslr-90e_in1k` | [MOCOV3 300-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/mocov3_resnet50_8xb512-amp-coslr-300e_in1k_20220927-1e4f3304.pth) | N/A | N/A | 72.80 | [config](benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-d21ddac2.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-d21ddac2.json) |
| `resnet50_mocov3-800e-pre_8xb128-linear-coslr-90e_in1k` | [MOCOV3 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/mocov3_resnet50_8xb512-amp-coslr-800e_in1k_20220927-e043f51a.pth) | N/A | N/A | 74.40 | [config](benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-0e97a483.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-0e97a483.json) |
| `vit-small-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k` | [MOCOV3](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k-224_20220826-08bc52f7.pth) | N/A | N/A | 73.60 | [config](benchmarks/vit-small-p16_8xb128-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k_20220826-376674ef.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k_20220826-376674ef.json) |
| `vit-base-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k` | [MOCOV3](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k-224_20220826-25213343.pth) | N/A | N/A | 76.90 | [config](benchmarks/vit-base-p16_8xb128-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k_20220826-83be7758.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k_20220826-83be7758.json) |
| `vit-base-p16_mocov3-pre_8xb64-coslr-150e_in1k` | [MOCOV3](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k-224_20220826-25213343.pth) | N/A | N/A | 83.00 | [config](benchmarks/vit-base-p16_8xb64-coslr-150e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k_20220826-f1e6c442.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k_20220826-f1e6c442.json) |
| `vit-large-p16_mocov3-pre_8xb64-coslr-100e_in1k` | [MOCOV3](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k-224_20220829-9b88a442.pth) | N/A | N/A | 83.70 | [config](benchmarks/vit-large-p16_8xb64-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k_20220829-878a2f7f.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k_20220829-878a2f7f.json) |
| `resnet50_mocov3-100e-pre_8xb128-linear-coslr-90e_in1k` | [MOCOV3 100-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_20220927-f1144efa.pth) | 25.56 | 4.11 | 69.60 | [config](benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-8f7d937e.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-8f7d937e.json) |
| `resnet50_mocov3-300e-pre_8xb128-linear-coslr-90e_in1k` | [MOCOV3 300-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/mocov3_resnet50_8xb512-amp-coslr-300e_in1k_20220927-1e4f3304.pth) | 25.56 | 4.11 | 72.80 | [config](benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-d21ddac2.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-d21ddac2.json) |
| `resnet50_mocov3-800e-pre_8xb128-linear-coslr-90e_in1k` | [MOCOV3 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/mocov3_resnet50_8xb512-amp-coslr-800e_in1k_20220927-e043f51a.pth) | 25.56 | 4.11 | 74.40 | [config](benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-0e97a483.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-0e97a483.json) |
| `vit-small-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k` | [MOCOV3](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k-224_20220826-08bc52f7.pth) | 22.05 | 4.61 | 73.60 | [config](benchmarks/vit-small-p16_8xb128-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k_20220826-376674ef.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k_20220826-376674ef.json) |
| `vit-base-p16_mocov3-pre_8xb64-coslr-150e_in1k` | [MOCOV3](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k-224_20220826-25213343.pth) | 86.57 | 17.58 | 83.00 | [config](benchmarks/vit-base-p16_8xb64-coslr-150e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k_20220826-f1e6c442.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k_20220826-f1e6c442.json) |
| `vit-base-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k` | [MOCOV3](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k-224_20220826-25213343.pth) | 86.57 | 17.58 | 76.90 | [config](benchmarks/vit-base-p16_8xb128-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k_20220826-83be7758.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k_20220826-83be7758.json) |
| `vit-large-p16_mocov3-pre_8xb64-coslr-100e_in1k` | [MOCOV3](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k-224_20220829-9b88a442.pth) | 304.33 | 61.60 | 83.70 | [config](benchmarks/vit-large-p16_8xb64-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k_20220829-878a2f7f.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k_20220829-878a2f7f.json) |
## Citation

View File

@ -10,158 +10,192 @@ Collections:
- ViT
- MoCo
Paper:
URL: https://arxiv.org/abs/2104.02057
Title: "An Empirical Study of Training Self-Supervised Vision Transformers"
Title: An Empirical Study of Training Self-Supervised Vision Transformers
URL: https://arxiv.org/abs/2104.02057
README: configs/mocov3/README.md
Models:
- Name: mocov3_resnet50_8xb512-amp-coslr-100e_in1k
In Collection: MoCoV3
Metadata:
Epochs: 100
Batch Size: 4096
FLOPs: 4109364224
Parameters: 68012160
Training Data: ImageNet-1k
In Collection: MoCoV3
Results: null
Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_20220927-f1144efa.pth
Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k.py
Downstream:
- resnet50_mocov3-100e-pre_8xb128-linear-coslr-90e_in1k
- Name: resnet50_mocov3-100e-pre_8xb128-linear-coslr-90e_in1k
- Name: mocov3_resnet50_8xb512-amp-coslr-300e_in1k
Metadata:
Epochs: 300
Batch Size: 4096
FLOPs: 4109364224
Parameters: 68012160
Training Data: ImageNet-1k
In Collection: MoCoV3
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/mocov3_resnet50_8xb512-amp-coslr-300e_in1k_20220927-1e4f3304.pth
Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k.py
Downstream:
- resnet50_mocov3-300e-pre_8xb128-linear-coslr-90e_in1k
- Name: mocov3_resnet50_8xb512-amp-coslr-800e_in1k
Metadata:
Epochs: 800
Batch Size: 4096
FLOPs: 4109364224
Parameters: 68012160
Training Data: ImageNet-1k
In Collection: MoCoV3
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/mocov3_resnet50_8xb512-amp-coslr-800e_in1k_20220927-e043f51a.pth
Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k.py
Downstream:
- resnet50_mocov3-800e-pre_8xb128-linear-coslr-90e_in1k
- Name: resnet50_mocov3-100e-pre_8xb128-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 1024
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: MoCoV3
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 69.6
Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-8f7d937e.pth
- Name: mocov3_resnet50_8xb512-amp-coslr-300e_in1k
In Collection: MoCoV3
Metadata:
Epochs: 300
Batch Size: 4096
Results: null
Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/mocov3_resnet50_8xb512-amp-coslr-300e_in1k_20220927-1e4f3304.pth
Downstream:
- resnet50_mocov3-300e-pre_8xb128-linear-coslr-90e_in1k
Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py
- Name: resnet50_mocov3-300e-pre_8xb128-linear-coslr-90e_in1k
In Collection: MoCoV3
Metadata:
Epochs: 90
Batch Size: 1024
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: MoCoV3
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 72.8
Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-d21ddac2.pth
- Name: mocov3_resnet50_8xb512-amp-coslr-800e_in1k
In Collection: MoCoV3
Metadata:
Epochs: 800
Batch Size: 4096
Results: null
Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/mocov3_resnet50_8xb512-amp-coslr-800e_in1k_20220927-e043f51a.pth
Downstream:
- resnet50_mocov3-800e-pre_8xb128-linear-coslr-90e_in1k
Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py
- Name: resnet50_mocov3-800e-pre_8xb128-linear-coslr-90e_in1k
In Collection: MoCoV3
Metadata:
Epochs: 90
Batch Size: 1024
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: MoCoV3
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 74.4
Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-0e97a483.pth
Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py
- Name: mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k
In Collection: MoCoV3
Metadata:
Epochs: 300
Batch Size: 4096
FLOPs: 4607954304
Parameters: 84266752
Training Data: ImageNet-1k
In Collection: MoCoV3
Results: null
Config: configs/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k-224_20220826-08bc52f7.pth
Config: configs/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k.py
Downstream:
- vit-small-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
- Name: vit-small-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
In Collection: MoCoV3
Metadata:
Epochs: 90
Batch Size: 1024
FLOPs: 4607954304
Parameters: 22050664
Training Data: ImageNet-1k
In Collection: MoCoV3
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 73.6
Config: configs/mocov3/benchmarks/vit-small-p16_8xb128-linear-coslr-90e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k_20220826-376674ef.pth
Config: configs/mocov3/benchmarks/vit-small-p16_8xb128-linear-coslr-90e_in1k.py
- Name: mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k
In Collection: MoCoV3
Metadata:
Epochs: 300
Batch Size: 4096
FLOPs: 17581972224
Parameters: 215678464
Training Data: ImageNet-1k
In Collection: MoCoV3
Results: null
Config: configs/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k-224_20220826-25213343.pth
Config: configs/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k.py
Downstream:
- vit-base-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
- vit-base-p16_mocov3-pre_8xb64-coslr-150e_in1k
- Name: vit-base-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
In Collection: MoCoV3
Metadata:
Epochs: 90
Batch Size: 1024
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 76.9
Config: configs/mocov3/benchmarks/vit-base-p16_8xb128-linear-coslr-90e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k_20220826-83be7758.pth
- Name: vit-base-p16_mocov3-pre_8xb64-coslr-150e_in1k
In Collection: MoCoV3
Metadata:
Epochs: 150
Batch Size: 512
FLOPs: 17581972224
Parameters: 86567656
Training Data: ImageNet-1k
In Collection: MoCoV3
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.0
Config: configs/mocov3/benchmarks/vit-base-p16_8xb64-coslr-150e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k_20220826-f1e6c442.pth
- Name: mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k
Config: configs/mocov3/benchmarks/vit-base-p16_8xb64-coslr-150e_in1k.py
- Name: vit-base-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 1024
FLOPs: 17581972224
Parameters: 86567656
Training Data: ImageNet-1k
In Collection: MoCoV3
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 76.9
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k_20220826-83be7758.pth
Config: configs/mocov3/benchmarks/vit-base-p16_8xb128-linear-coslr-90e_in1k.py
- Name: mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k
Metadata:
Epochs: 300
Batch Size: 4096
Results: null
Config: configs/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k-224_20220829-9b88a442.pth
Downstream:
- vit-large-p16_mocov3-pre_8xb64-coslr-100e_in1k
- Name: vit-large-p16_mocov3-pre_8xb64-coslr-100e_in1k
FLOPs: 61603111936
Parameters: 652781568
Training Data: ImageNet-1k
In Collection: MoCoV3
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k-224_20220829-9b88a442.pth
Config: configs/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k.py
Downstream:
- vit-large-p16_mocov3-pre_8xb64-coslr-100e_in1k
- Name: vit-large-p16_mocov3-pre_8xb64-coslr-100e_in1k
Metadata:
Epochs: 100
Batch Size: 512
FLOPs: 61603111936
Parameters: 304326632
Training Data: ImageNet-1k
In Collection: MoCoV3
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.7
Config: configs/mocov3/benchmarks/vit-large-p16_8xb64-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k_20220829-878a2f7f.pth
Config: configs/mocov3/benchmarks/vit-large-p16_8xb64-coslr-100e_in1k.py

View File

@ -65,15 +65,15 @@ python tools/test.py configs/simclr/benchmarks/resnet50_8xb512-linear-coslr-90e_
| Model | Params (M) | Flops (G) | Config | Download |
| :---------------------------------------- | :--------: | :-------: | :--------------------------------------------------: | :--------------------------------------------------------------------------------------: |
| `simclr_resnet50_16xb256-coslr-200e_in1k` | N/A | N/A | [config](simclr_resnet50_16xb256-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/simclr_resnet50_16xb256-coslr-200e_in1k_20220825-4d9cce50.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/simclr_resnet50_16xb256-coslr-200e_in1k_20220825-4d9cce50.json) |
| `simclr_resnet50_16xb256-coslr-800e_in1k` | N/A | N/A | [config](simclr_resnet50_16xb256-coslr-800e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-800e_in1k/simclr_resnet50_16xb256-coslr-800e_in1k_20220825-85fcc4de.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-800e_in1k/simclr_resnet50_16xb256-coslr-800e_in1k_20220825-85fcc4de.json) |
| `simclr_resnet50_16xb256-coslr-200e_in1k` | 27.97 | 4.11 | [config](simclr_resnet50_16xb256-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/simclr_resnet50_16xb256-coslr-200e_in1k_20220825-4d9cce50.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/simclr_resnet50_16xb256-coslr-200e_in1k_20220825-4d9cce50.json) |
| `simclr_resnet50_16xb256-coslr-800e_in1k` | 27.97 | 4.11 | [config](simclr_resnet50_16xb256-coslr-800e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-800e_in1k/simclr_resnet50_16xb256-coslr-800e_in1k_20220825-85fcc4de.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-800e_in1k/simclr_resnet50_16xb256-coslr-800e_in1k_20220825-85fcc4de.json) |
### Image Classification on ImageNet-1k
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
| :---------------------------------------- | :------------------------------------------: | :--------: | :-------: | :-------: | :----------------------------------------: | :-------------------------------------------: |
| `resnet50_simclr-200e-pre_8xb512-linear-coslr-90e_in1k` | [SIMCLR 200-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/simclr_resnet50_16xb256-coslr-200e_in1k_20220825-4d9cce50.pth) | N/A | N/A | 66.90 | [config](benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-f12c0457.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-f12c0457.json) |
| `resnet50_simclr-800e-pre_8xb512-linear-coslr-90e_in1k` | [SIMCLR 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-800e_in1k/simclr_resnet50_16xb256-coslr-800e_in1k_20220825-85fcc4de.pth) | N/A | N/A | 69.20 | [config](benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-800e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-b80ae1e5.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-800e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-b80ae1e5.json) |
| `resnet50_simclr-200e-pre_8xb512-linear-coslr-90e_in1k` | [SIMCLR 200-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/simclr_resnet50_16xb256-coslr-200e_in1k_20220825-4d9cce50.pth) | 25.56 | 4.11 | 66.90 | [config](benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-f12c0457.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-f12c0457.json) |
| `resnet50_simclr-800e-pre_8xb512-linear-coslr-90e_in1k` | [SIMCLR 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-800e_in1k/simclr_resnet50_16xb256-coslr-800e_in1k_20220825-85fcc4de.pth) | 25.56 | 4.11 | 69.20 | [config](benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-800e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-b80ae1e5.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-800e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-b80ae1e5.json) |
## Citation

View File

@ -9,53 +9,64 @@ Collections:
- ResNet
- SimCLR
Paper:
URL: https://arxiv.org/abs/2002.05709
Title: "A simple framework for contrastive learning of visual representations"
Title: A simple framework for contrastive learning of visual representations
URL: https://arxiv.org/abs/2002.05709
README: configs/simclr/README.md
Models:
- Name: simclr_resnet50_16xb256-coslr-200e_in1k
In Collection: SimCLR
Metadata:
Epochs: 200
Batch Size: 4096
FLOPs: 4109364224
Parameters: 27968832
Training Data: ImageNet-1k
In Collection: SimCLR
Results: null
Config: configs/simclr/simclr_resnet50_16xb256-coslr-200e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/simclr_resnet50_16xb256-coslr-200e_in1k_20220825-4d9cce50.pth
Config: configs/simclr/simclr_resnet50_16xb256-coslr-200e_in1k.py
Downstream:
- resnet50_simclr-200e-pre_8xb512-linear-coslr-90e_in1k
- Name: resnet50_simclr-200e-pre_8xb512-linear-coslr-90e_in1k
- Name: simclr_resnet50_16xb256-coslr-800e_in1k
Metadata:
Epochs: 200
Batch Size: 4096
FLOPs: 4109364224
Parameters: 27968832
Training Data: ImageNet-1k
In Collection: SimCLR
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-800e_in1k/simclr_resnet50_16xb256-coslr-800e_in1k_20220825-85fcc4de.pth
Config: configs/simclr/simclr_resnet50_16xb256-coslr-800e_in1k.py
Downstream:
- resnet50_simclr-800e-pre_8xb512-linear-coslr-90e_in1k
- Name: resnet50_simclr-200e-pre_8xb512-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 4096
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: SimCLR
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 66.9
Config: configs/simclr/benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-f12c0457.pth
- Name: simclr_resnet50_16xb256-coslr-800e_in1k
In Collection: SimCLR
Metadata:
Epochs: 200
Batch Size: 4096
Results: null
Config: configs/simclr/simclr_resnet50_16xb256-coslr-800e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-800e_in1k/simclr_resnet50_16xb256-coslr-800e_in1k_20220825-85fcc4de.pth
Downstream:
- resnet50_simclr-800e-pre_8xb512-linear-coslr-90e_in1k
Config: configs/simclr/benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py
- Name: resnet50_simclr-800e-pre_8xb512-linear-coslr-90e_in1k
In Collection: SimCLR
Metadata:
Epochs: 90
Batch Size: 4096
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: SimCLR
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 69.2
Config: configs/simclr/benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/simclr/simclr_resnet50_16xb256-coslr-800e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-b80ae1e5.pth
Config: configs/simclr/benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py

View File

@ -65,18 +65,18 @@ python tools/test.py configs/simmim/benchmarks/swin-base-w6_8xb256-coslr-100e_in
| Model | Params (M) | Flops (G) | Config | Download |
| :-------------------------------------------------------- | :--------: | :-------: | :-----------------------------------------------------------: | :-------------------------------------------------------------: |
| `simmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px` | N/A | N/A | [config](simmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192_20220829-0e15782d.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192_20220829-0e15782d.json) |
| `simmim_swin-base-w6_16xb128-amp-coslr-800e_in1k-192px` | N/A | N/A | [config](simmim_swin-base-w6_16xb128-amp-coslr-800e_in1k-192px.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192_20220916-a0e931ac.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192_20220916-a0e931ac.json) |
| `simmim_swin-large-w12_16xb128-amp-coslr-800e_in1k-192px` | N/A | N/A | [config](simmim_swin-large-w12_16xb128-amp-coslr-800e_in1k-192px.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192_20220916-4ad216d3.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192_20220916-4ad216d3.json) |
| `simmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px` | 89.87 | 18.83 | [config](simmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192_20220829-0e15782d.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192_20220829-0e15782d.json) |
| `simmim_swin-base-w6_16xb128-amp-coslr-800e_in1k-192px` | 89.87 | 18.83 | [config](simmim_swin-base-w6_16xb128-amp-coslr-800e_in1k-192px.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192_20220916-a0e931ac.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192_20220916-a0e931ac.json) |
| `simmim_swin-large-w12_16xb128-amp-coslr-800e_in1k-192px` | 199.92 | 55.85 | [config](simmim_swin-large-w12_16xb128-amp-coslr-800e_in1k-192px.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192_20220916-4ad216d3.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192_20220916-4ad216d3.json) |
### Image Classification on ImageNet-1k
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
| :---------------------------------------- | :------------------------------------------: | :--------: | :-------: | :-------: | :----------------------------------------: | :-------------------------------------------: |
| `swin-base-w6_simmim-100e-pre_8xb256-coslr-100e_in1k-192px` | [SIMMIM 100-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192_20220829-0e15782d.pth) | N/A | N/A | 82.70 | [config](benchmarks/swin-base-w6_8xb256-coslr-100e_in1k-192px.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k/swin-base_ft-8xb256-coslr-100e_in1k_20220829-9cf23aa1.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k/swin-base_ft-8xb256-coslr-100e_in1k_20220829-9cf23aa1.json) |
| `swin-base-w7_simmim-100e-pre_8xb256-coslr-100e_in1k` | [SIMMIM 100-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192_20220829-0e15782d.pth) | N/A | N/A | 83.50 | [config](benchmarks/swin-base-w7_8xb256-coslr-100e_in1k.py) | N/A |
| `swin-base-w6_simmim-800e-pre_8xb256-coslr-100e_in1k-192px` | [SIMMIM 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192_20220916-a0e931ac.pth) | N/A | N/A | 83.80 | [config](benchmarks/swin-base-w6_8xb256-coslr-100e_in1k-192px.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k-224/swin-base_ft-8xb256-coslr-100e_in1k-224_20221208-155cc6e6.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k-224/swin-base_ft-8xb256-coslr-100e_in1k-224_20221208-155cc6e6.json) |
| `swin-large-w14_simmim-800e-pre_8xb256-coslr-100e_in1k` | [SIMMIM 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192_20220916-4ad216d3.pth) | N/A | N/A | 84.80 | [config](benchmarks/swin-large-w14_8xb256-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224_20220916-d4865790.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224_20220916-d4865790.json) |
| `swin-base-w6_simmim-100e-pre_8xb256-coslr-100e_in1k-192px` | [SIMMIM 100-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192_20220829-0e15782d.pth) | 87.75 | 11.30 | 82.70 | [config](benchmarks/swin-base-w6_8xb256-coslr-100e_in1k-192px.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k/swin-base_ft-8xb256-coslr-100e_in1k_20220829-9cf23aa1.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k/swin-base_ft-8xb256-coslr-100e_in1k_20220829-9cf23aa1.json) |
| `swin-base-w7_simmim-100e-pre_8xb256-coslr-100e_in1k` | [SIMMIM 100-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192_20220829-0e15782d.pth) | 87.77 | 15.47 | 83.50 | [config](benchmarks/swin-base-w7_8xb256-coslr-100e_in1k.py) | N/A |
| `swin-base-w6_simmim-800e-pre_8xb256-coslr-100e_in1k-192px` | [SIMMIM 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192_20220916-a0e931ac.pth) | 87.77 | 15.47 | 83.80 | [config](benchmarks/swin-base-w7_8xb256-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k-224/swin-base_ft-8xb256-coslr-100e_in1k-224_20221208-155cc6e6.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k-224/swin-base_ft-8xb256-coslr-100e_in1k-224_20221208-155cc6e6.json) |
| `swin-large-w14_simmim-800e-pre_8xb256-coslr-100e_in1k` | [SIMMIM 800-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192_20220916-4ad216d3.pth) | 196.85 | 38.85 | 84.80 | [config](benchmarks/swin-large-w14_8xb256-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224_20220916-d4865790.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224_20220916-d4865790.json) |
## Citation

View File

@ -14,7 +14,7 @@ model = dict(
# optimizer settings
optim_wrapper = dict(
type='AmpOptimWrapper',
optimizer=dict(type='AdamW', lr=5e-3),
optimizer=dict(type='AdamW', lr=5e-3, weight_decay=0.05),
clip_grad=dict(max_norm=5.0),
constructor='LearningRateDecayOptimWrapperConstructor',
paramwise_cfg=dict(

View File

@ -57,7 +57,7 @@ model = dict(
# optimizer settings
optim_wrapper = dict(
type='AmpOptimWrapper',
optimizer=dict(type='AdamW', lr=5e-3),
optimizer=dict(type='AdamW', lr=5e-3, weight_decay=0.05),
clip_grad=dict(max_norm=5.0),
constructor='LearningRateDecayOptimWrapperConstructor',
paramwise_cfg=dict(

View File

@ -60,7 +60,7 @@ model = dict(
# optimizer settings
optim_wrapper = dict(
type='AmpOptimWrapper',
optimizer=dict(type='AdamW', lr=5e-3),
optimizer=dict(type='AdamW', lr=5e-3, weight_decay=0.05),
clip_grad=dict(max_norm=5.0),
constructor='LearningRateDecayOptimWrapperConstructor',
paramwise_cfg=dict(

View File

@ -8,88 +8,108 @@ Collections:
Architecture:
- Swin
Paper:
URL: https://arxiv.org/abs/2111.09886
Title: "SimMIM: A Simple Framework for Masked Image Modeling"
Title: 'SimMIM: A Simple Framework for Masked Image Modeling'
URL: https://arxiv.org/abs/2111.09886
README: configs/simmim/README.md
Models:
- Name: simmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px
In Collection: SimMIM
Metadata:
Epochs: 100
Batch Size: 2048
FLOPs: 18832161792
Parameters: 89874104
Training Data: ImageNet-1k
In Collection: SimMIM
Results: null
Config: configs/simmim/simmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192_20220829-0e15782d.pth
Config: configs/simmim/simmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px.py
Downstream:
- swin-base-w6_simmim-100e-pre_8xb256-coslr-100e_in1k-192px
- swin-base-w7_simmim-100e-pre_8xb256-coslr-100e_in1k
- Name: swin-base-w6_simmim-100e-pre_8xb256-coslr-100e_in1k-192px
In Collection: SimMIM
- Name: simmim_swin-base-w6_16xb128-amp-coslr-800e_in1k-192px
Metadata:
Epochs: 100
Batch Size: 2048
FLOPs: 18832161792
Parameters: 89874104
Training Data: ImageNet-1k
In Collection: SimMIM
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192_20220916-a0e931ac.pth
Config: configs/simmim/simmim_swin-base-w6_16xb128-amp-coslr-800e_in1k-192px.py
Downstream:
- swin-base-w6_simmim-800e-pre_8xb256-coslr-100e_in1k-192px
- Name: simmim_swin-large-w12_16xb128-amp-coslr-800e_in1k-192px
Metadata:
Epochs: 100
Batch Size: 2048
FLOPs: 55849130496
Parameters: 199920372
Training Data: ImageNet-1k
In Collection: SimMIM
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192_20220916-4ad216d3.pth
Config: configs/simmim/simmim_swin-large-w12_16xb128-amp-coslr-800e_in1k-192px.py
Downstream:
- swin-large-w14_simmim-800e-pre_8xb256-coslr-100e_in1k
- Name: swin-base-w6_simmim-100e-pre_8xb256-coslr-100e_in1k-192px
Metadata:
Epochs: 100
Batch Size: 2048
FLOPs: 11303976960
Parameters: 87750176
Training Data: ImageNet-1k
In Collection: SimMIM
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 82.7
Config: configs/simmim/benchmarks/swin-base-w6_8xb256-coslr-100e_in1k-192px.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k/swin-base_ft-8xb256-coslr-100e_in1k_20220829-9cf23aa1.pth
Config: configs/simmim/benchmarks/swin-base-w6_8xb256-coslr-100e_in1k-192px.py
- Name: swin-base-w7_simmim-100e-pre_8xb256-coslr-100e_in1k
In Collection: SimMIM
Metadata:
Epochs: 100
Batch Size: 2048
FLOPs: 15466852352
Parameters: 87768224
Training Data: ImageNet-1k
In Collection: SimMIM
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.5
Weights: null
Config: configs/simmim/benchmarks/swin-base-w7_8xb256-coslr-100e_in1k.py
- Name: simmim_swin-base-w6_16xb128-amp-coslr-800e_in1k-192px
In Collection: SimMIM
Metadata:
Epochs: 100
Batch Size: 2048
Results: null
Config: configs/simmim/simmim_swin-base-w6_16xb128-amp-coslr-800e_in1k-192px.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192_20220916-a0e931ac.pth
Downstream:
- swin-base-w6_simmim-800e-pre_8xb256-coslr-100e_in1k-192px
- Name: swin-base-w6_simmim-800e-pre_8xb256-coslr-100e_in1k-192px
In Collection: SimMIM
Metadata:
Epochs: 100
Batch Size: 2048
FLOPs: 15466852352
Parameters: 87768224
Training Data: ImageNet-1k
In Collection: SimMIM
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.8
Config: configs/simmim/benchmarks/swin-base-w7_8xb256-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k-224/swin-base_ft-8xb256-coslr-100e_in1k-224_20221208-155cc6e6.pth
- Name: simmim_swin-large-w12_16xb128-amp-coslr-800e_in1k-192px
In Collection: SimMIM
Metadata:
Epochs: 100
Batch Size: 2048
Results: null
Config: configs/simmim/simmim_swin-large-w12_16xb128-amp-coslr-800e_in1k-192px.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192_20220916-4ad216d3.pth
Downstream:
- swin-large-w14_simmim-800e-pre_8xb256-coslr-100e_in1k
Config: configs/simmim/benchmarks/swin-base-w7_8xb256-coslr-100e_in1k.py
- Name: swin-large-w14_simmim-800e-pre_8xb256-coslr-100e_in1k
In Collection: SimMIM
Metadata:
Epochs: 100
Batch Size: 2048
FLOPs: 38853083136
Parameters: 196848316
Training Data: ImageNet-1k
In Collection: SimMIM
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 84.8
Config: configs/simmim/benchmarks/swin-large-w14_8xb256-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224_20220916-d4865790.pth
Config: configs/simmim/benchmarks/swin-large-w14_8xb256-coslr-100e_in1k.py

View File

@ -65,15 +65,15 @@ python tools/test.py configs/simsiam/benchmarks/resnet50_8xb512-linear-coslr-90e
| Model | Params (M) | Flops (G) | Config | Download |
| :--------------------------------------- | :--------: | :-------: | :-------------------------------------------------: | :----------------------------------------------------------------------------------------: |
| `simsiam_resnet50_8xb32-coslr-100e_in1k` | N/A | N/A | [config](simsiam_resnet50_8xb32-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k/simsiam_resnet50_8xb32-coslr-100e_in1k_20220825-d07cb2e6.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k/simsiam_resnet50_8xb32-coslr-100e_in1k_20220825-d07cb2e6.json) |
| `simsiam_resnet50_8xb32-coslr-200e_in1k` | N/A | N/A | [config](simsiam_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k/simsiam_resnet50_8xb32-coslr-200e_in1k_20220825-efe91299.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k/simsiam_resnet50_8xb32-coslr-200e_in1k_20220825-efe91299.json) |
| `simsiam_resnet50_8xb32-coslr-100e_in1k` | 38.20 | 4.11 | [config](simsiam_resnet50_8xb32-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k/simsiam_resnet50_8xb32-coslr-100e_in1k_20220825-d07cb2e6.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k/simsiam_resnet50_8xb32-coslr-100e_in1k_20220825-d07cb2e6.json) |
| `simsiam_resnet50_8xb32-coslr-200e_in1k` | 38.20 | 4.11 | [config](simsiam_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k/simsiam_resnet50_8xb32-coslr-200e_in1k_20220825-efe91299.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k/simsiam_resnet50_8xb32-coslr-200e_in1k_20220825-efe91299.json) |
### Image Classification on ImageNet-1k
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
| :---------------------------------------- | :------------------------------------------: | :--------: | :-------: | :-------: | :----------------------------------------: | :-------------------------------------------: |
| `resnet50_simsiam-100e-pre_8xb512-linear-coslr-90e_in1k` | [SIMSIAM 100-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k/simsiam_resnet50_8xb32-coslr-100e_in1k_20220825-d07cb2e6.pth) | N/A | N/A | 68.30 | [config](benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-f53ba400.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-f53ba400.json) |
| `resnet50_simsiam-200e-pre_8xb512-linear-coslr-90e_in1k` | [SIMSIAM 200-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k/simsiam_resnet50_8xb32-coslr-200e_in1k_20220825-efe91299.pth) | N/A | N/A | 69.80 | [config](benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-519b5135.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-519b5135.json) |
| `resnet50_simsiam-100e-pre_8xb512-linear-coslr-90e_in1k` | [SIMSIAM 100-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k/simsiam_resnet50_8xb32-coslr-100e_in1k_20220825-d07cb2e6.pth) | 25.56 | 4.11 | 68.30 | [config](benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-f53ba400.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-f53ba400.json) |
| `resnet50_simsiam-200e-pre_8xb512-linear-coslr-90e_in1k` | [SIMSIAM 200-Epochs](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k/simsiam_resnet50_8xb32-coslr-200e_in1k_20220825-efe91299.pth) | 25.56 | 4.11 | 69.80 | [config](benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-519b5135.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-519b5135.json) |
## Citation

View File

@ -9,53 +9,64 @@ Collections:
Architecture:
- ResNet
Paper:
URL: https://arxiv.org/abs/2011.10566
Title: "Exploring simple siamese representation learning"
Title: Exploring simple siamese representation learning
URL: https://arxiv.org/abs/2011.10566
README: configs/simsiam/README.md
Models:
- Name: simsiam_resnet50_8xb32-coslr-100e_in1k
In Collection: SimSiam
Metadata:
Epochs: 100
Batch Size: 256
FLOPs: 4109364224
Parameters: 38199360
Training Data: ImageNet-1k
In Collection: SimSiam
Results: null
Config: configs/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k/simsiam_resnet50_8xb32-coslr-100e_in1k_20220825-d07cb2e6.pth
Config: configs/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py
Downstream:
- resnet50_simsiam-100e-pre_8xb512-linear-coslr-90e_in1k
- Name: resnet50_simsiam-100e-pre_8xb512-linear-coslr-90e_in1k
- Name: simsiam_resnet50_8xb32-coslr-200e_in1k
Metadata:
Epochs: 200
Batch Size: 256
FLOPs: 4109364224
Parameters: 38199360
Training Data: ImageNet-1k
In Collection: SimSiam
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k/simsiam_resnet50_8xb32-coslr-200e_in1k_20220825-efe91299.pth
Config: configs/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py
Downstream:
- resnet50_simsiam-200e-pre_8xb512-linear-coslr-90e_in1k
- Name: resnet50_simsiam-100e-pre_8xb512-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 4096
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: SimSiam
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 68.3
Config: configs/simsiam/benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-f53ba400.pth
- Name: simsiam_resnet50_8xb32-coslr-200e_in1k
In Collection: SimSiam
Metadata:
Epochs: 200
Batch Size: 256
Results: null
Config: configs/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k/simsiam_resnet50_8xb32-coslr-200e_in1k_20220825-efe91299.pth
Downstream:
- resnet50_simsiam-200e-pre_8xb512-linear-coslr-90e_in1k
Config: configs/simsiam/benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py
- Name: resnet50_simsiam-200e-pre_8xb512-linear-coslr-90e_in1k
In Collection: SimSiam
Metadata:
Epochs: 90
Batch Size: 4096
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: SimSiam
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 69.8
Config: configs/simsiam/benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb512-coslr-90e_in1k/resnet50_linear-8xb512-coslr-90e_in1k_20220825-519b5135.pth
Config: configs/simsiam/benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py

View File

@ -65,13 +65,13 @@ python tools/test.py configs/swav/benchmarks/resnet50_8xb512-linear-coslr-90e_in
| Model | Params (M) | Flops (G) | Config | Download |
| :----------------------------------------------------- | :--------: | :-------: | :------------------------------------------------------------: | :---------------------------------------------------------------: |
| `swav_resnet50_8xb32-mcrop-coslr-200e_in1k-224px-96px` | N/A | N/A | [config](swav_resnet50_8xb32-mcrop-coslr-200e_in1k-224px-96px.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20220825-5b3fc7fc.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20220825-5b3fc7fc.json) |
| `swav_resnet50_8xb32-mcrop-coslr-200e_in1k-224px-96px` | 28.35 | 4.11 | [config](swav_resnet50_8xb32-mcrop-coslr-200e_in1k-224px-96px.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20220825-5b3fc7fc.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20220825-5b3fc7fc.json) |
### Image Classification on ImageNet-1k
| Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
| :---------------------------------------- | :------------------------------------------: | :--------: | :-------: | :-------: | :----------------------------------------: | :-------------------------------------------: |
| `resnet50_swav-pre_8xb32-linear-coslr-100e_in1k` | [SWAV](https://download.openmmlab.com/mmselfsup/1.x/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20220825-5b3fc7fc.pth) | N/A | N/A | 70.50 | [config](benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96/resnet50_linear-8xb32-coslr-100e_in1k/resnet50_linear-8xb32-coslr-100e_in1k_20220825-80341e08.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96/resnet50_linear-8xb32-coslr-100e_in1k/resnet50_linear-8xb32-coslr-100e_in1k_20220825-80341e08.json) |
| `resnet50_swav-pre_8xb32-linear-coslr-100e_in1k` | [SWAV](https://download.openmmlab.com/mmselfsup/1.x/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20220825-5b3fc7fc.pth) | 25.56 | 4.11 | 70.50 | [config](benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/1.x/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96/resnet50_linear-8xb32-coslr-100e_in1k/resnet50_linear-8xb32-coslr-100e_in1k_20220825-80341e08.pth) \| [log](https://download.openmmlab.com/mmselfsup/1.x/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96/resnet50_linear-8xb32-coslr-100e_in1k/resnet50_linear-8xb32-coslr-100e_in1k_20220825-80341e08.json) |
## Citation

View File

@ -9,30 +9,36 @@ Collections:
- ResNet
- SwAV
Paper:
URL: https://arxiv.org/abs/2006.09882
Title: "Unsupervised Learning of Visual Features by Contrasting Cluster Assignments"
Title: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
URL: https://arxiv.org/abs/2006.09882
README: configs/swav/README.md
Models:
- Name: swav_resnet50_8xb32-mcrop-coslr-200e_in1k-224px-96px
In Collection: SwAV
Metadata:
Epochs: 200
Batch Size: 256
FLOPs: 4109364224
Parameters: 28354752
Training Data: ImageNet-1k
In Collection: SwAV
Results: null
Config: configs/swav/swav_resnet50_8xb32-mcrop-coslr-200e_in1k-224px-96px.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20220825-5b3fc7fc.pth
Config: configs/swav/swav_resnet50_8xb32-mcrop-coslr-200e_in1k-224px-96px.py
Downstream:
- resnet50_swav-pre_8xb32-linear-coslr-100e_in1k
- Name: resnet50_swav-pre_8xb32-linear-coslr-100e_in1k
In Collection: SwAV
Metadata:
Epochs: 100
Batch Size: 256
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: SwAV
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 70.5
Config: configs/swav/benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/1.x/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96/resnet50_linear-8xb32-coslr-100e_in1k/resnet50_linear-8xb32-coslr-100e_in1k_20220825-80341e08.pth
Config: configs/swav/benchmarks/resnet50_8xb512-linear-coslr-90e_in1k.py

View File

@ -145,14 +145,8 @@ def generate_summary_table(models):
if model.results is None:
continue
name = model.name
if model.metadata.parameters is not None:
params = f'{model.metadata.parameters / 1e6:.2f}' # Params
else:
params = ''
if model.metadata.flops is not None:
flops = f'{model.metadata.flops / 1e9:.2f}' # Params
else:
flops = ''
params = f'{model.metadata.parameters / 1e6:.2f}' # Params
flops = f'{model.metadata.flops / 1e9:.2f}' # Params
result = model.results[0]
top1 = result.metrics.get('Top 1 Accuracy')
top5 = result.metrics.get('Top 5 Accuracy')

View File

@ -145,14 +145,8 @@ def generate_summary_table(models):
if model.results is None:
continue
name = model.name
if model.metadata.parameters is not None:
params = f'{model.metadata.parameters / 1e6:.2f}' # Params
else:
params = ''
if model.metadata.flops is not None:
flops = f'{model.metadata.flops / 1e9:.2f}' # Params
else:
flops = ''
params = f'{model.metadata.parameters / 1e6:.2f}' # Params
flops = f'{model.metadata.flops / 1e9:.2f}' # Params
result = model.results[0]
top1 = result.metrics.get('Top 1 Accuracy')
top5 = result.metrics.get('Top 5 Accuracy')

View File

@ -282,9 +282,9 @@ def list_models(pattern=None, exclude_patterns=None, task=None) -> List[str]:
task_matches = []
for key in matches:
metainfo = ModelHub._models_dict[key]
if metainfo.results is None:
continue
if task in [result.task for result in metainfo.results]:
if metainfo.results is None and task == 'null':
task_matches.append(key)
elif task in [result.task for result in metainfo.results]:
task_matches.append(key)
matches = task_matches