parent
29b882d4eb
commit
702c196514
|
@ -69,10 +69,12 @@ docs/en/_build/
|
|||
docs/en/_model_zoo.rst
|
||||
docs/en/modelzoo_statistics.md
|
||||
docs/en/papers/
|
||||
docs/en/api/generated/
|
||||
docs/zh_CN/_build/
|
||||
docs/zh_CN/_model_zoo.rst
|
||||
docs/zh_CN/modelzoo_statistics.md
|
||||
docs/zh_CN/papers/
|
||||
docs/zh_CN/api/generated/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
|
|
@ -14,3 +14,7 @@ article.pytorch-article .section :not(dt) > code {
|
|||
background-color: #f3f4f7;
|
||||
border-radius: 5px;
|
||||
}
|
||||
|
||||
table.colwidths-auto td {
|
||||
width: 50%
|
||||
}
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
.. role:: hidden
|
||||
:class: hidden-section
|
||||
.. currentmodule:: {{ module }}
|
||||
|
||||
|
||||
{{ name | underline}}
|
||||
|
||||
.. autoclass:: {{ name }}
|
||||
:members:
|
||||
|
||||
|
||||
..
|
||||
autogenerated from source/_templates/classtemplate.rst
|
||||
note it does not have :inherited-members:
|
|
@ -1,68 +0,0 @@
|
|||
mmcls.apis
|
||||
-------------
|
||||
.. automodule:: mmcls.apis
|
||||
:members:
|
||||
|
||||
mmcls.core
|
||||
-------------
|
||||
|
||||
evaluation
|
||||
^^^^^^^^^^
|
||||
.. automodule:: mmcls.core.evaluation
|
||||
:members:
|
||||
|
||||
mmcls.models
|
||||
---------------
|
||||
|
||||
models
|
||||
^^^^^^
|
||||
.. automodule:: mmcls.models
|
||||
:members:
|
||||
|
||||
classifiers
|
||||
^^^^^^^^^^^
|
||||
.. automodule:: mmcls.models.classifiers
|
||||
:members:
|
||||
|
||||
backbones
|
||||
^^^^^^^^^^
|
||||
.. automodule:: mmcls.models.backbones
|
||||
:members:
|
||||
|
||||
necks
|
||||
^^^^^^
|
||||
.. automodule:: mmcls.models.necks
|
||||
:members:
|
||||
|
||||
heads
|
||||
^^^^^^
|
||||
.. automodule:: mmcls.models.heads
|
||||
:members:
|
||||
|
||||
losses
|
||||
^^^^^^
|
||||
.. automodule:: mmcls.models.losses
|
||||
:members:
|
||||
|
||||
utils
|
||||
^^^^^^
|
||||
.. automodule:: mmcls.models.utils
|
||||
:members:
|
||||
|
||||
mmcls.datasets
|
||||
-----------------
|
||||
|
||||
datasets
|
||||
^^^^^^^^
|
||||
.. automodule:: mmcls.datasets
|
||||
:members:
|
||||
|
||||
pipelines
|
||||
^^^^^^^^^
|
||||
.. automodule:: mmcls.datasets.pipelines
|
||||
:members:
|
||||
|
||||
mmcls.utils
|
||||
--------------
|
||||
.. automodule:: mmcls.utils
|
||||
:members:
|
|
@ -0,0 +1,45 @@
|
|||
.. role:: hidden
|
||||
:class: hidden-section
|
||||
|
||||
mmcls.apis
|
||||
===================================
|
||||
|
||||
These are some high-level APIs for classification tasks.
|
||||
|
||||
.. contents:: mmcls.apis
|
||||
:depth: 2
|
||||
:local:
|
||||
:backlinks: top
|
||||
|
||||
.. currentmodule:: mmcls.apis
|
||||
|
||||
Train
|
||||
------------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
|
||||
init_random_seed
|
||||
set_random_seed
|
||||
train_model
|
||||
|
||||
Test
|
||||
------------------
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
|
||||
single_gpu_test
|
||||
multi_gpu_test
|
||||
|
||||
Inference
|
||||
------------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
|
||||
init_model
|
||||
inference_model
|
||||
show_result_pyplot
|
|
@ -0,0 +1,61 @@
|
|||
.. role:: hidden
|
||||
:class: hidden-section
|
||||
|
||||
mmcls.core
|
||||
===================================
|
||||
|
||||
This package includes some runtime components. These components are useful in
|
||||
classification tasks but not supported by MMCV yet.
|
||||
|
||||
.. note::
|
||||
|
||||
Some components may be moved to MMCV in the future.
|
||||
|
||||
.. contents:: mmcls.core
|
||||
:depth: 2
|
||||
:local:
|
||||
:backlinks: top
|
||||
|
||||
.. currentmodule:: mmcls.core
|
||||
|
||||
Evaluation
|
||||
------------------
|
||||
|
||||
Evaluation metrics calculation functions
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
|
||||
precision
|
||||
recall
|
||||
f1_score
|
||||
precision_recall_f1
|
||||
average_precision
|
||||
mAP
|
||||
support
|
||||
average_performance
|
||||
calculate_confusion_matrix
|
||||
|
||||
Hook
|
||||
------------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
ClassNumCheckHook
|
||||
PreciseBNHook
|
||||
CosineAnnealingCooldownLrUpdaterHook
|
||||
|
||||
|
||||
Optimizers
|
||||
------------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
Lamb
|
|
@ -0,0 +1,56 @@
|
|||
.. role:: hidden
|
||||
:class: hidden-section
|
||||
|
||||
mmcls.datasets
|
||||
===================================
|
||||
|
||||
The ``datasets`` package contains several usual datasets for image classification tasks and some dataset wrappers.
|
||||
|
||||
.. currentmodule:: mmcls.datasets
|
||||
|
||||
Custom Dataset
|
||||
--------------
|
||||
|
||||
.. autoclass:: CustomDataset
|
||||
|
||||
ImageNet
|
||||
--------
|
||||
|
||||
.. autoclass:: ImageNet
|
||||
|
||||
.. autoclass:: ImageNet21k
|
||||
|
||||
CIFAR
|
||||
-----
|
||||
|
||||
.. autoclass:: CIFAR10
|
||||
|
||||
.. autoclass:: CIFAR100
|
||||
|
||||
MNIST
|
||||
-----
|
||||
|
||||
.. autoclass:: MNIST
|
||||
|
||||
.. autoclass:: FashionMNIST
|
||||
|
||||
VOC
|
||||
---
|
||||
|
||||
.. autoclass:: VOC
|
||||
|
||||
Base classes
|
||||
------------
|
||||
|
||||
.. autoclass:: BaseDataset
|
||||
|
||||
.. autoclass:: MultiLabelDataset
|
||||
|
||||
Dataset Wrappers
|
||||
----------------
|
||||
|
||||
.. autoclass:: ConcatDataset
|
||||
|
||||
.. autoclass:: RepeatDataset
|
||||
|
||||
.. autoclass:: ClassBalancedDataset
|
|
@ -0,0 +1,137 @@
|
|||
.. role:: hidden
|
||||
:class: hidden-section
|
||||
|
||||
mmcls.models
|
||||
===================================
|
||||
|
||||
The ``models`` package contains several sub-packages for addressing the different components of a model.
|
||||
|
||||
- :ref:`classifiers`: The top-level module which defines the whole process of a classification model.
|
||||
- :ref:`backbones`: Usually a feature extraction network, e.g., ResNet, MobileNet.
|
||||
- :ref:`necks`: The component between backbones and heads, e.g., GlobalAveragePooling.
|
||||
- :ref:`heads`: The component for specific tasks. In MMClassification, we provides heads for classification.
|
||||
- :ref:`losses`: Loss functions.
|
||||
|
||||
.. currentmodule:: mmcls.models
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
|
||||
build_classifier
|
||||
build_backbone
|
||||
build_neck
|
||||
build_head
|
||||
build_loss
|
||||
|
||||
.. _classifiers:
|
||||
|
||||
Classifier
|
||||
------------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
BaseClassifier
|
||||
ImageClassifier
|
||||
|
||||
.. _backbones:
|
||||
|
||||
Backbones
|
||||
------------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
AlexNet
|
||||
CSPDarkNet
|
||||
CSPNet
|
||||
CSPResNeXt
|
||||
CSPResNet
|
||||
Conformer
|
||||
ConvMixer
|
||||
ConvNeXt
|
||||
DistilledVisionTransformer
|
||||
EfficientNet
|
||||
HRNet
|
||||
LeNet5
|
||||
MlpMixer
|
||||
MobileNetV2
|
||||
MobileNetV3
|
||||
PCPVT
|
||||
PoolFormer
|
||||
RegNet
|
||||
RepMLPNet
|
||||
RepVGG
|
||||
Res2Net
|
||||
ResNeSt
|
||||
ResNeXt
|
||||
ResNet
|
||||
ResNetV1c
|
||||
ResNetV1d
|
||||
ResNet_CIFAR
|
||||
SEResNeXt
|
||||
SEResNet
|
||||
SVT
|
||||
ShuffleNetV1
|
||||
ShuffleNetV2
|
||||
SwinTransformer
|
||||
T2T_ViT
|
||||
TIMMBackbone
|
||||
TNT
|
||||
VGG
|
||||
VisionTransformer
|
||||
|
||||
.. _necks:
|
||||
|
||||
Necks
|
||||
------------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
GlobalAveragePooling
|
||||
GeneralizedMeanPooling
|
||||
HRFuseScales
|
||||
|
||||
.. _heads:
|
||||
|
||||
Heads
|
||||
------------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
ClsHead
|
||||
LinearClsHead
|
||||
StackedLinearClsHead
|
||||
MultiLabelClsHead
|
||||
MultiLabelLinearClsHead
|
||||
VisionTransformerClsHead
|
||||
DeiTClsHead
|
||||
ConformerHead
|
||||
|
||||
.. _losses:
|
||||
|
||||
Losses
|
||||
------------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
Accuracy
|
||||
AsymmetricLoss
|
||||
CrossEntropyLoss
|
||||
LabelSmoothLoss
|
||||
FocalLoss
|
||||
SeesawLoss
|
|
@ -0,0 +1,35 @@
|
|||
.. role:: hidden
|
||||
:class: hidden-section
|
||||
|
||||
Batch Augmentation
|
||||
===================================
|
||||
|
||||
Batch augmentation is the augmentation which involve multiple samples, such as Mixup and CutMix.
|
||||
|
||||
In MMClassification, these batch augmentation is used as a part of :ref:`classifiers`. A typical usage is as below:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
model = dict(
|
||||
backbone = ...,
|
||||
neck = ...,
|
||||
head = ...,
|
||||
train_cfg=dict(augments=[
|
||||
dict(type='BatchMixup', alpha=0.8, prob=0.5, num_classes=num_classes),
|
||||
dict(type='BatchCutMix', alpha=1.0, prob=0.5, num_classes=num_classes),
|
||||
]))
|
||||
)
|
||||
|
||||
.. currentmodule:: mmcls.models.utils.augment
|
||||
|
||||
Mixup
|
||||
-----
|
||||
.. autoclass:: BatchMixupLayer
|
||||
|
||||
CutMix
|
||||
------
|
||||
.. autoclass:: BatchCutMixLayer
|
||||
|
||||
ResizeMix
|
||||
---------
|
||||
.. autoclass:: BatchResizeMixLayer
|
|
@ -0,0 +1,50 @@
|
|||
.. role:: hidden
|
||||
:class: hidden-section
|
||||
|
||||
mmcls.models.utils
|
||||
===================================
|
||||
|
||||
This package includes some helper functions and common components used in various networks.
|
||||
|
||||
.. contents:: mmcls.models.utils
|
||||
:depth: 2
|
||||
:local:
|
||||
:backlinks: top
|
||||
|
||||
.. currentmodule:: mmcls.models.utils
|
||||
|
||||
Common Components
|
||||
------------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
InvertedResidual
|
||||
SELayer
|
||||
ShiftWindowMSA
|
||||
MultiheadAttention
|
||||
ConditionalPositionEncoding
|
||||
|
||||
Helper Functions
|
||||
------------------
|
||||
|
||||
channel_shuffle
|
||||
^^^^^^^^^^^^^^^
|
||||
.. autofunction:: channel_shuffle
|
||||
|
||||
make_divisible
|
||||
^^^^^^^^^^^^^^
|
||||
.. autofunction:: make_divisible
|
||||
|
||||
to_ntuple
|
||||
^^^^^^^^^^^^^^
|
||||
.. autofunction:: to_ntuple
|
||||
.. autofunction:: to_2tuple
|
||||
.. autofunction:: to_3tuple
|
||||
.. autofunction:: to_4tuple
|
||||
|
||||
is_tracing
|
||||
^^^^^^^^^^^^^^
|
||||
.. autofunction:: is_tracing
|
|
@ -0,0 +1,171 @@
|
|||
.. role:: hidden
|
||||
:class: hidden-section
|
||||
|
||||
Data Transformations
|
||||
***********************************
|
||||
|
||||
In MMClassification, the data preparation and the dataset is decomposed. The
|
||||
datasets only define how to get samples' basic information from the file
|
||||
system. These basic information includes the ground-truth label and raw images
|
||||
data / the paths of images.
|
||||
|
||||
To prepare the inputs data, we need to do some transformations on these basic
|
||||
information. These transformations includes loading, preprocessing and
|
||||
formatting. And a series of data transformations makes up a data pipeline.
|
||||
Therefore, you can find the a ``pipeline`` argument in the configs of dataset,
|
||||
for example:
|
||||
|
||||
.. code:: python
|
||||
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='RandomResizedCrop', size=224),
|
||||
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='ToTensor', keys=['gt_label']),
|
||||
dict(type='Collect', keys=['img', 'gt_label'])
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='Resize', size=256),
|
||||
dict(type='CenterCrop', crop_size=224),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img'])
|
||||
]
|
||||
|
||||
data = dict(
|
||||
train=dict(..., pipeline=train_pipeline),
|
||||
val=dict(..., pipeline=test_pipeline),
|
||||
test=dict(..., pipeline=test_pipeline),
|
||||
)
|
||||
|
||||
Every item of a pipeline list is one of the following data transformations class. And if you want to add a custom data transformation class, the tutorial :doc:`Custom Data Pipelines </tutorials/data_pipeline>` will help you.
|
||||
|
||||
.. contents:: mmcls.datasets.pipelines
|
||||
:depth: 2
|
||||
:local:
|
||||
:backlinks: top
|
||||
|
||||
.. currentmodule:: mmcls.datasets.pipelines
|
||||
|
||||
Loading
|
||||
=======
|
||||
|
||||
LoadImageFromFile
|
||||
---------------------
|
||||
.. autoclass:: LoadImageFromFile
|
||||
|
||||
Preprocessing and Augmentation
|
||||
==============================
|
||||
|
||||
CenterCrop
|
||||
---------------------
|
||||
.. autoclass:: CenterCrop
|
||||
|
||||
Lighting
|
||||
---------------------
|
||||
.. autoclass:: Lighting
|
||||
|
||||
Normalize
|
||||
---------------------
|
||||
.. autoclass:: Normalize
|
||||
|
||||
Pad
|
||||
---------------------
|
||||
.. autoclass:: Pad
|
||||
|
||||
Resize
|
||||
---------------------
|
||||
.. autoclass:: Resize
|
||||
|
||||
RandomCrop
|
||||
---------------------
|
||||
.. autoclass:: RandomCrop
|
||||
|
||||
RandomErasing
|
||||
---------------------
|
||||
.. autoclass:: RandomErasing
|
||||
|
||||
RandomFlip
|
||||
---------------------
|
||||
.. autoclass:: RandomFlip
|
||||
|
||||
RandomGrayscale
|
||||
---------------------
|
||||
.. autoclass:: RandomGrayscale
|
||||
|
||||
RandomResizedCrop
|
||||
---------------------
|
||||
.. autoclass:: RandomResizedCrop
|
||||
|
||||
ColorJitter
|
||||
---------------------
|
||||
.. autoclass:: ColorJitter
|
||||
|
||||
|
||||
Composed Augmentation
|
||||
---------------------
|
||||
Composed augmentation is a kind of methods which compose a series of data
|
||||
augmentation transformations, such as ``AutoAugment`` and ``RandAugment``.
|
||||
|
||||
.. autoclass:: AutoAugment
|
||||
|
||||
.. autoclass:: RandAugment
|
||||
|
||||
In composed augmentation, we need to specify several data transformations or
|
||||
several groups of data transformations (The ``policies`` argument) as the
|
||||
random sampling space. These data transformations are chosen from the below
|
||||
table. In addition, we provide some preset policies in `this folder`_.
|
||||
|
||||
.. _this folder: https://github.com/open-mmlab/mmclassification/tree/master/configs/_base_/datasets/pipelines
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
AutoContrast
|
||||
Brightness
|
||||
ColorTransform
|
||||
Contrast
|
||||
Cutout
|
||||
Equalize
|
||||
Invert
|
||||
Posterize
|
||||
Rotate
|
||||
Sharpness
|
||||
Shear
|
||||
Solarize
|
||||
SolarizeAdd
|
||||
Translate
|
||||
|
||||
Formatting
|
||||
==========
|
||||
|
||||
Collect
|
||||
---------------------
|
||||
.. autoclass:: Collect
|
||||
|
||||
ImageToTensor
|
||||
---------------------
|
||||
.. autoclass:: ImageToTensor
|
||||
|
||||
ToNumpy
|
||||
---------------------
|
||||
.. autoclass:: ToNumpy
|
||||
|
||||
ToPIL
|
||||
---------------------
|
||||
.. autoclass:: ToPIL
|
||||
|
||||
ToTensor
|
||||
---------------------
|
||||
.. autoclass:: ToTensor
|
||||
|
||||
Transpose
|
||||
---------------------
|
||||
.. autoclass:: Transpose
|
|
@ -0,0 +1,23 @@
|
|||
.. role:: hidden
|
||||
:class: hidden-section
|
||||
|
||||
mmcls.utils
|
||||
===================================
|
||||
|
||||
These are some useful help function in the ``utils`` package.
|
||||
|
||||
.. contents:: mmcls.utils
|
||||
:depth: 1
|
||||
:local:
|
||||
:backlinks: top
|
||||
|
||||
.. currentmodule:: mmcls.utils
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
|
||||
collect_env
|
||||
get_root_logger
|
||||
load_json_log
|
||||
setup_multi_processes
|
|
@ -44,6 +44,8 @@ release = get_version()
|
|||
# ones.
|
||||
extensions = [
|
||||
'sphinx.ext.autodoc',
|
||||
'sphinx.ext.autosummary',
|
||||
'sphinx.ext.intersphinx',
|
||||
'sphinx.ext.napoleon',
|
||||
'sphinx.ext.viewcode',
|
||||
'sphinx_markdown_tables',
|
||||
|
@ -218,6 +220,15 @@ StandaloneHTMLBuilder.supported_image_types = [
|
|||
# Ignore >>> when copying code
|
||||
copybutton_prompt_text = r'>>> |\.\.\. '
|
||||
copybutton_prompt_is_regexp = True
|
||||
# Auto-generated header anchors
|
||||
myst_heading_anchors = 3
|
||||
# Configuration for intersphinx
|
||||
intersphinx_mapping = {
|
||||
'python': ('https://docs.python.org/3', None),
|
||||
'numpy': ('https://numpy.org/doc/stable', None),
|
||||
'torch': ('https://pytorch.org/docs/stable/', None),
|
||||
'mmcv': ('https://mmcv.readthedocs.io/en/master/', None),
|
||||
}
|
||||
|
||||
|
||||
def builder_inited_handler(app):
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
[html writers]
|
||||
table_style: colwidths-auto
|
|
@ -57,9 +57,17 @@ You can switch between Chinese and English documentation in the lower-left corne
|
|||
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: API Reference
|
||||
|
||||
api.rst
|
||||
mmcls.apis <api/apis>
|
||||
mmcls.core <api/core>
|
||||
mmcls.models <api/models>
|
||||
mmcls.models.utils <api/models.utils>
|
||||
mmcls.datasets <api/datasets>
|
||||
Data Transformations <api/transforms>
|
||||
Batch Augmentation <api/models.utils.augment>
|
||||
mmcls.utils <api/utils>
|
||||
|
||||
|
||||
.. toctree::
|
||||
|
|
|
@ -13,7 +13,7 @@ If you wish to inspect the config file, you may run `python tools/misc/print_con
|
|||
- [Ignore some fields in the base configs](#ignore-some-fields-in-the-base-configs)
|
||||
- [Use some fields in the base configs](#use-some-fields-in-the-base-configs)
|
||||
- [Modify config through script arguments](#modify-config-through-script-arguments)
|
||||
- [Import user-defined modules](#import-ser-defined-modules)
|
||||
- [Import user-defined modules](#import-user-defined-modules)
|
||||
- [FAQ](#faq)
|
||||
|
||||
<!-- TOC -->
|
||||
|
|
|
@ -98,6 +98,8 @@ More supported backends can be found in [mmcv.fileio.FileClient](https://github.
|
|||
|
||||
- remove: all other keys except for those specified by `keys`
|
||||
|
||||
For more information about other data transformation classes, please refer to [Data Transformations](../api/transforms.rst)
|
||||
|
||||
## Extend and use custom pipelines
|
||||
|
||||
1. Write a new pipeline in any file, e.g., `my_pipeline.py`, and place it in
|
||||
|
|
|
@ -7,14 +7,8 @@ In this tutorial, we will introduce some methods about how to customize workflow
|
|||
- [Customize Workflow](#customize-workflow)
|
||||
- [Hooks](#hooks)
|
||||
- [Default training hooks](#default-training-hooks)
|
||||
- [CheckpointHook](#checkpointhook)
|
||||
- [LoggerHooks](#loggerhooks)
|
||||
- [EvalHook](#evalhook)
|
||||
- [Use other implemented hooks](#use-other-implemented-hooks)
|
||||
- [Customize self-implemented hooks](#customize-self-implemented-hooks)
|
||||
- [1. Implement a new hook](#1.-implement-a-new-hook)
|
||||
- [2. Register the new hook](#2.-register-the-new-hook)
|
||||
- [3. Modify the config](#3.-modify-the-config)
|
||||
- [FAQ](#faq)
|
||||
|
||||
<!-- TOC -->
|
||||
|
|
|
@ -18,6 +18,21 @@ def single_gpu_test(model,
|
|||
show=False,
|
||||
out_dir=None,
|
||||
**show_kwargs):
|
||||
"""Test model with local single gpu.
|
||||
|
||||
This method tests model with a single gpu and supports showing results.
|
||||
|
||||
Args:
|
||||
model (:obj:`torch.nn.Module`): Model to be tested.
|
||||
data_loader (:obj:`torch.utils.data.DataLoader`): Pytorch data loader.
|
||||
show (bool): Whether to show the test results. Defaults to False.
|
||||
out_dir (str): The output directory of result plots of all samples.
|
||||
Defaults to None, which means not to write output files.
|
||||
**show_kwargs: Any other keyword arguments for showing results.
|
||||
|
||||
Returns:
|
||||
list: The prediction results.
|
||||
"""
|
||||
model.eval()
|
||||
results = []
|
||||
dataset = data_loader.dataset
|
||||
|
|
|
@ -75,6 +75,28 @@ def train_model(model,
|
|||
timestamp=None,
|
||||
device=None,
|
||||
meta=None):
|
||||
"""Train a model.
|
||||
|
||||
This method will build dataloaders, wrap the model and build a runner
|
||||
according to the provided config.
|
||||
|
||||
Args:
|
||||
model (:obj:`torch.nn.Module`): The model to be run.
|
||||
dataset (:obj:`mmcls.datasets.BaseDataset` | List[BaseDataset]):
|
||||
The dataset used to train the model. It can be a single dataset,
|
||||
or a list of dataset with the same length as workflow.
|
||||
cfg (:obj:`mmcv.utils.Config`): The configs of the experiment.
|
||||
distributed (bool): Whether to train the model in a distributed
|
||||
environment. Defaults to False.
|
||||
validate (bool): Whether to do validation with
|
||||
:obj:`mmcv.runner.EvalHook`. Defaults to False.
|
||||
timestamp (str, optional): The timestamp string to auto generate the
|
||||
name of log files. Defaults to None.
|
||||
device (str, optional): TODO
|
||||
meta (dict, optional): A dict records some import information such as
|
||||
environment info and seed, which will be logged in logger hook.
|
||||
Defaults to None.
|
||||
"""
|
||||
logger = get_root_logger()
|
||||
|
||||
# prepare data loaders
|
||||
|
|
|
@ -65,13 +65,15 @@ from torch.optim import Optimizer
|
|||
|
||||
@OPTIMIZERS.register_module()
|
||||
class Lamb(Optimizer):
|
||||
"""Implements a pure pytorch variant of FuseLAMB (NvLamb variant) optimizer
|
||||
from apex.optimizers.FusedLAMB
|
||||
reference: https://github.com/NVIDIA/DeepLearningExamples/blob/master/
|
||||
PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py
|
||||
"""A pure pytorch variant of FuseLAMB (NvLamb variant) optimizer.
|
||||
|
||||
LAMB was proposed in `Large Batch Optimization for Deep Learning: Training
|
||||
BERT in 76 minutes`_.
|
||||
This class is copied from `timm`_. The LAMB was proposed in `Large Batch
|
||||
Optimization for Deep Learning - Training BERT in 76 minutes`_.
|
||||
|
||||
.. _timm:
|
||||
https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/lamb.py
|
||||
.. _Large Batch Optimization for Deep Learning - Training BERT in 76 minutes:
|
||||
https://arxiv.org/abs/1904.00962
|
||||
|
||||
Arguments:
|
||||
params (iterable): iterable of parameters to optimize or dicts defining
|
||||
|
@ -89,13 +91,7 @@ class Lamb(Optimizer):
|
|||
trust_clip (bool): enable LAMBC trust ratio clipping (default: False)
|
||||
always_adapt (boolean, optional): Apply adaptive learning rate to 0.0
|
||||
weight decay parameter (default: False)
|
||||
|
||||
.. _Large Batch Optimization for Deep Learning - Training BERT in 76
|
||||
minutes:
|
||||
https://arxiv.org/abs/1904.00962
|
||||
.. _On the Convergence of Adam and Beyond:
|
||||
https://openreview.net/forum?id=ryQu7f-RZ
|
||||
"""
|
||||
""" # noqa: E501
|
||||
|
||||
def __init__(self,
|
||||
params,
|
||||
|
|
|
@ -18,7 +18,7 @@ class ConcatDataset(_ConcatDataset):
|
|||
add `get_cat_ids` function.
|
||||
|
||||
Args:
|
||||
datasets (list[:obj:`Dataset`]): A list of datasets.
|
||||
datasets (list[:obj:`BaseDataset`]): A list of datasets.
|
||||
separate_eval (bool): Whether to evaluate the results
|
||||
separately if it is used as validation dataset.
|
||||
Defaults to True.
|
||||
|
@ -117,7 +117,7 @@ class RepeatDataset(object):
|
|||
epochs.
|
||||
|
||||
Args:
|
||||
dataset (:obj:`Dataset`): The dataset to be repeated.
|
||||
dataset (:obj:`BaseDataset`): The dataset to be repeated.
|
||||
times (int): Repeat times.
|
||||
"""
|
||||
|
||||
|
@ -157,9 +157,11 @@ class RepeatDataset(object):
|
|||
class ClassBalancedDataset(object):
|
||||
r"""A wrapper of repeated dataset with repeat factor.
|
||||
|
||||
Suitable for training on class imbalanced datasets like LVIS. Following
|
||||
the sampling strategy in [#1]_, in each epoch, an image may appear multiple
|
||||
times based on its "repeat factor".
|
||||
Suitable for training on class imbalanced datasets like LVIS. Following the
|
||||
sampling strategy in `this paper`_, in each epoch, an image may appear
|
||||
multiple times based on its "repeat factor".
|
||||
|
||||
.. _this paper: https://arxiv.org/pdf/1908.03195.pdf
|
||||
|
||||
The repeat factor for an image is a function of the frequency the rarest
|
||||
category labeled in that image. The "frequency of category c" in [0, 1]
|
||||
|
@ -184,16 +186,13 @@ class ClassBalancedDataset(object):
|
|||
.. math::
|
||||
r(I) = \max_{c \in L(I)} r(c)
|
||||
|
||||
References:
|
||||
.. [#1] https://arxiv.org/pdf/1908.03195.pdf
|
||||
|
||||
Args:
|
||||
dataset (:obj:`CustomDataset`): The dataset to be repeated.
|
||||
dataset (:obj:`BaseDataset`): The dataset to be repeated.
|
||||
oversample_thr (float): frequency threshold below which data is
|
||||
repeated. For categories with `f_c` >= `oversample_thr`, there is
|
||||
no oversampling. For categories with `f_c` < `oversample_thr`, the
|
||||
degree of oversampling following the square-root inverse frequency
|
||||
heuristic above.
|
||||
repeated. For categories with ``f_c`` >= ``oversample_thr``, there
|
||||
is no oversampling. For categories with ``f_c`` <
|
||||
``oversample_thr``, the degree of oversampling following the
|
||||
square-root inverse frequency heuristic above.
|
||||
"""
|
||||
|
||||
def __init__(self, dataset, oversample_thr):
|
||||
|
@ -278,7 +277,7 @@ class KFoldDataset:
|
|||
and use the fold left to do validation.
|
||||
|
||||
Args:
|
||||
dataset (:obj:`CustomDataset`): The dataset to be divided.
|
||||
dataset (:obj:`BaseDataset`): The dataset to be divided.
|
||||
fold (int): The fold used to do validation. Defaults to 0.
|
||||
num_splits (int): The number of all folds. Defaults to 5.
|
||||
test_mode (bool): Use the training dataset or validation dataset.
|
||||
|
|
|
@ -9,8 +9,33 @@ from .custom import CustomDataset
|
|||
class ImageNet(CustomDataset):
|
||||
"""`ImageNet <http://www.image-net.org>`_ Dataset.
|
||||
|
||||
This implementation is modified from
|
||||
https://github.com/pytorch/vision/blob/master/torchvision/datasets/imagenet.py
|
||||
The dataset supports two kinds of annotation format. More details can be
|
||||
found in :class:`CustomDataset`.
|
||||
|
||||
Args:
|
||||
data_prefix (str): The path of data directory.
|
||||
pipeline (Sequence[dict]): A list of dict, where each element
|
||||
represents a operation defined in :mod:`mmcls.datasets.pipelines`.
|
||||
Defaults to an empty tuple.
|
||||
classes (str | Sequence[str], optional): Specify names of classes.
|
||||
|
||||
- If is string, it should be a file path, and the every line of
|
||||
the file is a name of a class.
|
||||
- If is a sequence of string, every item is a name of class.
|
||||
- If is None, use the default ImageNet-1k classes names.
|
||||
|
||||
Defaults to None.
|
||||
ann_file (str, optional): The annotation file. If is string, read
|
||||
samples paths from the ann_file. If is None, find samples in
|
||||
``data_prefix``. Defaults to None.
|
||||
extensions (Sequence[str]): A sequence of allowed extensions. Defaults
|
||||
to ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif').
|
||||
test_mode (bool): In train mode or test mode. It's only a mark and
|
||||
won't be used in this class. Defaults to False.
|
||||
file_client_args (dict, optional): Arguments to instantiate a
|
||||
FileClient. See :class:`mmcv.fileio.FileClient` for details.
|
||||
If None, automatically inference from the specified path.
|
||||
Defaults to None.
|
||||
""" # noqa: E501
|
||||
|
||||
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif')
|
||||
|
|
|
@ -31,8 +31,8 @@ class ImageNet21k(CustomDataset):
|
|||
- If is string, it should be a file path, and the every line of
|
||||
the file is a name of a class.
|
||||
- If is a sequence of string, every item is a name of class.
|
||||
- If is None, use ``cls.CLASSES`` or the names of sub folders
|
||||
(If use the second way to arrange samples).
|
||||
- If is None, the object won't have category information.
|
||||
(Not recommended)
|
||||
|
||||
Defaults to None.
|
||||
ann_file (str, optional): The annotation file. If is string, read
|
||||
|
|
|
@ -133,8 +133,8 @@ class RandAugment(object):
|
|||
When magnitude_std=0, we calculate the magnitude as follows:
|
||||
|
||||
.. math::
|
||||
\text{magnitude} = \frac{\text{magnitude\_level}}
|
||||
{\text{total\_level}} \times (\text{val2} - \text{val1})
|
||||
\text{magnitude} = \frac{\text{magnitude_level}}
|
||||
{\text{totallevel}} \times (\text{val2} - \text{val1})
|
||||
+ \text{val1}
|
||||
"""
|
||||
|
||||
|
|
|
@ -798,8 +798,8 @@ class CenterCrop(object):
|
|||
to perform the center crop with the ``crop_size_`` as:
|
||||
|
||||
.. math::
|
||||
\text{crop\_size\_} = \frac{\text{crop\_size}}{\text{crop\_size} +
|
||||
\text{crop\_padding}} \times \text{short\_edge}
|
||||
\text{crop_size_} = \frac{\text{crop_size}}{\text{crop_size} +
|
||||
\text{crop_padding}} \times \text{short_edge}
|
||||
|
||||
And then the pipeline resizes the img to the input crop size.
|
||||
"""
|
||||
|
|
|
@ -201,8 +201,9 @@ class PixelEmbed(BaseModule):
|
|||
|
||||
@BACKBONES.register_module()
|
||||
class TNT(BaseBackbone):
|
||||
""" Transformer in Transformer
|
||||
A PyTorch implement of : `Transformer in Transformer
|
||||
"""Transformer in Transformer.
|
||||
|
||||
A PyTorch implement of: `Transformer in Transformer
|
||||
<https://arxiv.org/abs/2103.00112>`_
|
||||
|
||||
Inspiration from
|
||||
|
|
|
@ -9,6 +9,24 @@ from .vision_transformer_head import VisionTransformerClsHead
|
|||
|
||||
@HEADS.register_module()
|
||||
class DeiTClsHead(VisionTransformerClsHead):
|
||||
"""Distilled Vision Transformer classifier head.
|
||||
|
||||
Comparing with the :class:`VisionTransformerClsHead`, this head adds an
|
||||
extra linear layer to handle the dist token. The final classification score
|
||||
is the average of both linear transformation results of ``cls_token`` and
|
||||
``dist_token``.
|
||||
|
||||
Args:
|
||||
num_classes (int): Number of categories excluding the background
|
||||
category.
|
||||
in_channels (int): Number of channels in the input feature map.
|
||||
hidden_dim (int): Number of the dimensions for hidden layer.
|
||||
Defaults to None, which means no extra hidden layer.
|
||||
act_cfg (dict): The activation config. Only available during
|
||||
pre-training. Defaults to ``dict(type='Tanh')``.
|
||||
init_cfg (dict): The extra initialization configs. Defaults to
|
||||
``dict(type='Constant', layer='Linear', val=0)``.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(DeiTClsHead, self).__init__(*args, **kwargs)
|
||||
|
|
|
@ -20,10 +20,12 @@ class VisionTransformerClsHead(ClsHead):
|
|||
num_classes (int): Number of categories excluding the background
|
||||
category.
|
||||
in_channels (int): Number of channels in the input feature map.
|
||||
hidden_dim (int): Number of the dimensions for hidden layer. Only
|
||||
available during pre-training. Default None.
|
||||
hidden_dim (int): Number of the dimensions for hidden layer.
|
||||
Defaults to None, which means no extra hidden layer.
|
||||
act_cfg (dict): The activation config. Only available during
|
||||
pre-training. Defaults to Tanh.
|
||||
pre-training. Defaults to ``dict(type='Tanh')``.
|
||||
init_cfg (dict): The extra initialization configs. Defaults to
|
||||
``dict(type='Constant', layer='Linear', val=0)``.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
|
|
|
@ -117,7 +117,42 @@ class BaseCutMixLayer(object, metaclass=ABCMeta):
|
|||
|
||||
@AUGMENT.register_module(name='BatchCutMix')
|
||||
class BatchCutMixLayer(BaseCutMixLayer):
|
||||
"""CutMix layer for batch CutMix."""
|
||||
r"""CutMix layer for a batch of data.
|
||||
|
||||
CutMix is a method to improve the network's generalization capability. It's
|
||||
proposed in `CutMix: Regularization Strategy to Train Strong Classifiers
|
||||
with Localizable Features <https://arxiv.org/abs/1905.04899>`
|
||||
|
||||
With this method, patches are cut and pasted among training images where
|
||||
the ground truth labels are also mixed proportionally to the area of the
|
||||
patches.
|
||||
|
||||
Args:
|
||||
alpha (float): Parameters for Beta distribution to generate the
|
||||
mixing ratio. It should be a positive number. More details
|
||||
can be found in :class:`BatchMixupLayer`.
|
||||
num_classes (int): The number of classes
|
||||
prob (float): The probability to execute cutmix. It should be in
|
||||
range [0, 1]. Defaults to 1.0.
|
||||
cutmix_minmax (List[float], optional): The min/max area ratio of the
|
||||
patches. If not None, the bounding-box of patches is uniform
|
||||
sampled within this ratio range, and the ``alpha`` will be ignored.
|
||||
Otherwise, the bounding-box is generated according to the
|
||||
``alpha``. Defaults to None.
|
||||
correct_lam (bool): Whether to apply lambda correction when cutmix bbox
|
||||
clipped by image borders. Defaults to True.
|
||||
|
||||
Note:
|
||||
If the ``cutmix_minmax`` is None, how to generate the bounding-box of
|
||||
patches according to the ``alpha``?
|
||||
|
||||
First, generate a :math:`\lambda`, details can be found in
|
||||
:class:`BatchMixupLayer`. And then, the area ratio of the bounding-box
|
||||
is calculated by:
|
||||
|
||||
.. math::
|
||||
\text{ratio} = \sqrt{1-\lambda}
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(BatchCutMixLayer, self).__init__(*args, **kwargs)
|
||||
|
|
|
@ -12,7 +12,8 @@ class BaseMixupLayer(object, metaclass=ABCMeta):
|
|||
"""Base class for MixupLayer.
|
||||
|
||||
Args:
|
||||
alpha (float): Parameters for Beta distribution.
|
||||
alpha (float): Parameters for Beta distribution to generate the
|
||||
mixing ratio. It should be a positive number.
|
||||
num_classes (int): The number of classes.
|
||||
prob (float): MixUp probability. It should be in range [0, 1].
|
||||
Default to 1.0
|
||||
|
@ -36,7 +37,29 @@ class BaseMixupLayer(object, metaclass=ABCMeta):
|
|||
|
||||
@AUGMENT.register_module(name='BatchMixup')
|
||||
class BatchMixupLayer(BaseMixupLayer):
|
||||
"""Mixup layer for batch mixup."""
|
||||
r"""Mixup layer for a batch of data.
|
||||
|
||||
Mixup is a method to reduces the memorization of corrupt labels and
|
||||
increases the robustness to adversarial examples. It's
|
||||
proposed in `mixup: Beyond Empirical Risk Minimization
|
||||
<https://arxiv.org/abs/1710.09412>`
|
||||
|
||||
This method simply linearly mix pairs of data and their labels.
|
||||
|
||||
Args:
|
||||
alpha (float): Parameters for Beta distribution to generate the
|
||||
mixing ratio. It should be a positive number. More details
|
||||
are in the note.
|
||||
num_classes (int): The number of classes.
|
||||
prob (float): The probability to execute mixup. It should be in
|
||||
range [0, 1]. Default sto 1.0.
|
||||
|
||||
Note:
|
||||
The :math:`\alpha` (``alpha``) determines a random distribution
|
||||
:math:`Beta(\alpha, \alpha)`. For each batch of data, we sample
|
||||
a mixing ratio (marked as :math:`\lambda`, ``lam``) from the random
|
||||
distribution.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(BatchMixupLayer, self).__init__(*args, **kwargs)
|
||||
|
|
|
@ -10,27 +10,31 @@ from .utils import one_hot_encoding
|
|||
|
||||
@AUGMENT.register_module(name='BatchResizeMix')
|
||||
class BatchResizeMixLayer(BatchCutMixLayer):
|
||||
r"""ResizeMix Random Paste layer for batch ResizeMix.
|
||||
r"""ResizeMix Random Paste layer for a batch of data.
|
||||
|
||||
The ResizeMix will resize an image to a small patch and paste it on another
|
||||
image. More details can be found in `ResizeMix: Mixing Data with Preserved
|
||||
Object Information and True Labels <https://arxiv.org/abs/2012.11101>`_
|
||||
image. It's proposed in `ResizeMix: Mixing Data with Preserved Object
|
||||
Information and True Labels <https://arxiv.org/abs/2012.11101>`_
|
||||
|
||||
Args:
|
||||
alpha (float): Parameters for Beta distribution. Positive(>0)
|
||||
alpha (float): Parameters for Beta distribution to generate the
|
||||
mixing ratio. It should be a positive number. More details
|
||||
can be found in :class:`BatchMixupLayer`.
|
||||
num_classes (int): The number of classes.
|
||||
lam_min(float): The minimum value of lam. Defaults to 0.1.
|
||||
lam_max(float): The maximum value of lam. Defaults to 0.8.
|
||||
interpolation (str): algorithm used for upsampling:
|
||||
'nearest' | 'linear' | 'bilinear' | 'bicubic' | 'trilinear' | 'area'.
|
||||
Default to 'bilinear'.
|
||||
prob (float): mix probability. It should be in range [0, 1].
|
||||
Default to 1.0.
|
||||
cutmix_minmax (List[float], optional): cutmix min/max image ratio.
|
||||
(as percent of image size). When cutmix_minmax is not None, we
|
||||
generate cutmix bounding-box using cutmix_minmax instead of alpha
|
||||
'nearest' | 'linear' | 'bilinear' | 'bicubic' | 'trilinear' |
|
||||
'area'. Default to 'bilinear'.
|
||||
prob (float): The probability to execute resizemix. It should be in
|
||||
range [0, 1]. Defaults to 1.0.
|
||||
cutmix_minmax (List[float], optional): The min/max area ratio of the
|
||||
patches. If not None, the bounding-box of patches is uniform
|
||||
sampled within this ratio range, and the ``alpha`` will be ignored.
|
||||
Otherwise, the bounding-box is generated according to the
|
||||
``alpha``. Defaults to None.
|
||||
correct_lam (bool): Whether to apply lambda correction when cutmix bbox
|
||||
clipped by image borders. Default to True
|
||||
clipped by image borders. Defaults to True
|
||||
**kwargs: Any other parameters accpeted by :class:`BatchCutMixLayer`.
|
||||
|
||||
Note:
|
||||
|
@ -45,7 +49,7 @@ class BatchResizeMixLayer(BatchCutMixLayer):
|
|||
And the resize ratio of source images is calculated by :math:`\lambda`:
|
||||
|
||||
.. math::
|
||||
\text{ratio} = \sqrt{1-lam}
|
||||
\text{ratio} = \sqrt{1-\lambda}
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
|
|
|
@ -8,6 +8,8 @@ from mmcv.utils import digit_version
|
|||
|
||||
|
||||
def is_tracing() -> bool:
|
||||
"""Determine whether the model is called during the tracing of code with
|
||||
``torch.jit.trace``."""
|
||||
if digit_version(torch.__version__) >= digit_version('1.6.0'):
|
||||
on_trace = torch.jit.is_tracing()
|
||||
# In PyTorch 1.6, torch.jit.is_tracing has a bug.
|
||||
|
@ -26,6 +28,15 @@ def is_tracing() -> bool:
|
|||
|
||||
# From PyTorch internals
|
||||
def _ntuple(n):
|
||||
"""A `to_tuple` function generator.
|
||||
|
||||
It returns a function, this function will repeat the input to a tuple of
|
||||
length ``n`` if the input is not an Iterable object, otherwise, return the
|
||||
input directly.
|
||||
|
||||
Args:
|
||||
n (int): The number of the target length.
|
||||
"""
|
||||
|
||||
def parse(x):
|
||||
if isinstance(x, collections.abc.Iterable):
|
||||
|
|
|
@ -7,6 +7,16 @@ from mmcv.utils import get_logger
|
|||
|
||||
|
||||
def get_root_logger(log_file=None, log_level=logging.INFO):
|
||||
"""Get root logger.
|
||||
|
||||
Args:
|
||||
log_file (str, optional): File path of log. Defaults to None.
|
||||
log_level (int, optional): The level of logger.
|
||||
Defaults to :obj:`logging.INFO`.
|
||||
|
||||
Returns:
|
||||
:obj:`logging.Logger`: The obtained logger
|
||||
"""
|
||||
return get_logger('mmcls', log_file, log_level)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue