modify format of self.layers
parent
bb99ca5c66
commit
703714b78e
mmcls/models/backbones
tests/test_backbones
|
@ -92,16 +92,14 @@ class InvertedResidual(nn.Module):
|
|||
|
||||
branch_features = planes // 2
|
||||
if self.stride == 1:
|
||||
assert inplanes == branch_features * 2, (f'inplanes ({inplanes}) '
|
||||
'should equal to '
|
||||
'branch_features * 2 '
|
||||
f'({branch_features * 2})'
|
||||
' when stride is 1')
|
||||
assert inplanes == branch_features * 2, (
|
||||
f'inplanes ({inplanes}) should equal to branch_features * 2 '
|
||||
f'({branch_features * 2}) when stride is 1')
|
||||
|
||||
if inplanes != branch_features * 2:
|
||||
assert self.stride != 1, (f'stride ({self.stride}) should not '
|
||||
'equal 1 when inplanes != '
|
||||
'branch_features * 2')
|
||||
assert self.stride != 1, (
|
||||
f'stride ({self.stride}) should not equal 1 when '
|
||||
f'inplanes != branch_features * 2')
|
||||
|
||||
if self.stride > 1:
|
||||
self.branch1 = nn.Sequential(
|
||||
|
@ -250,12 +248,10 @@ class ShuffleNetv2(BaseBackbone):
|
|||
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
|
||||
self.layers = []
|
||||
self.layers = nn.ModuleList()
|
||||
for i, num_blocks in enumerate(self.stage_blocks):
|
||||
layer = self._make_layer(channels[i], num_blocks)
|
||||
layer_name = f'layer{i + 1}'
|
||||
self.add_module(layer_name, layer)
|
||||
self.layers.append(layer_name)
|
||||
self.layers.append(layer)
|
||||
|
||||
output_channels = channels[-1]
|
||||
self.conv2 = ConvModule(
|
||||
|
@ -294,8 +290,8 @@ class ShuffleNetv2(BaseBackbone):
|
|||
for param in self.conv1.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
for i in range(1, self.frozen_stages + 1):
|
||||
m = getattr(self, f'layer{i}')
|
||||
for i in range(self.frozen_stages):
|
||||
m = self.layers[i]
|
||||
m.eval()
|
||||
for param in m.parameters():
|
||||
param.requires_grad = False
|
||||
|
@ -316,8 +312,7 @@ class ShuffleNetv2(BaseBackbone):
|
|||
x = self.maxpool(x)
|
||||
|
||||
outs = []
|
||||
for i, layer_name in enumerate(self.layers):
|
||||
layer = getattr(self, layer_name)
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer(x)
|
||||
if i in self.out_indices:
|
||||
outs.append(x)
|
||||
|
|
|
@ -98,11 +98,10 @@ def test_shufflenetv2_backbone():
|
|||
model = ShuffleNetv2(frozen_stages=frozen_stages)
|
||||
model.init_weights()
|
||||
model.train()
|
||||
for layer in [model.conv1]:
|
||||
for param in layer.parameters():
|
||||
assert param.requires_grad is False
|
||||
for i in range(1, frozen_stages + 1):
|
||||
layer = getattr(model, f'layer{i}')
|
||||
for param in model.conv1.parameters():
|
||||
assert param.requires_grad is False
|
||||
for i in range(0, frozen_stages):
|
||||
layer = model.layers[i]
|
||||
for mod in layer.modules():
|
||||
if isinstance(mod, _BatchNorm):
|
||||
assert mod.training is False
|
||||
|
|
Loading…
Reference in New Issue