ignore ipu

pull/1727/head
zeyuanyin 2023-07-26 18:40:22 +04:00
parent 92a87a8848
commit 743ed01cdf
1 changed files with 0 additions and 125 deletions

View File

@ -1,125 +0,0 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmcv.transforms import (CenterCrop, ImageToTensor, Normalize, Resize,
ToTensor)
from mmengine.config import read_base
from mmengine.model import PretrainedInit
from mmengine.optim import CosineAnnealingLR, LinearLR
from mmengine.runner import CheckpointHook, IterBasedRunner
from torch.optim import SGD
from mmpretrain.datasets import Collect
with read_base():
from .._base_.datasets.imagenet_bs64_pil_resize_autoaug import *
from .._base_.default_runtime import *
from .._base_.models.vit_base_p16 import *
# specific to vit pretrain
paramwise_cfg = dict(custom_keys={
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0)
})
pretrained = 'https://download.openmmlab.com/mmclassification/v0/vit/pretrain/vit-base-p16_3rdparty_pt-64xb64_in1k-224_20210928-02284250.pth' # noqa
model = dict(
head=dict(
loss=dict(type=CrossEntropyLoss, loss_weight=1.0, _delete_=True), ),
backbone=dict(
img_size=224,
init_cfg=dict(
type=PretrainedInit,
checkpoint=pretrained,
_delete_=True,
prefix='backbone')))
img_norm_cfg = dict(
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)
train_pipeline = [
dict(type=LoadImageFromFile),
dict(type=RandomResizedCrop, scale=224, backend='pillow'),
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
dict(type=Normalize, **img_norm_cfg),
dict(type=ImageToTensor, keys=['img']),
dict(type=ToTensor, keys=['gt_label']),
dict(type=ToHalf, keys=['img']),
dict(type=Collect, keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type=LoadImageFromFile),
dict(type=Resize, scale=(224, -1), keep_ratio=True, backend='pillow'),
dict(type=CenterCrop, crop_size=224),
dict(type=Normalize, **img_norm_cfg),
dict(type=ImageToTensor, keys=['img']),
dict(type=ToHalf, keys=['img']),
dict(type=Collect, keys=['img'])
]
# change batch size
data = dict(
samples_per_gpu=17,
workers_per_gpu=16,
drop_last=True,
train=dict(pipeline=train_pipeline),
train_dataloader=dict(mode='async'),
val=dict(pipeline=test_pipeline, ),
val_dataloader=dict(samples_per_gpu=4, workers_per_gpu=1),
test=dict(pipeline=test_pipeline),
test_dataloader=dict(samples_per_gpu=4, workers_per_gpu=1))
# optimizer
optimizer = dict(
type=SGD,
lr=0.08,
weight_decay=1e-5,
momentum=0.9,
paramwise_cfg=paramwise_cfg,
)
# learning policy
param_scheduler = [
dict(type=LinearLR, start_factor=0.02, by_epoch=False, begin=0, end=800),
dict(
type=CosineAnnealingLR,
T_max=4200,
by_epoch=False,
begin=800,
end=5000)
]
# ipu cfg
# model partition config
ipu_model_cfg = dict(
train_split_edges=[
dict(layer_to_call='backbone.patch_embed', ipu_id=0),
dict(layer_to_call='backbone.layers.3', ipu_id=1),
dict(layer_to_call='backbone.layers.6', ipu_id=2),
dict(layer_to_call='backbone.layers.9', ipu_id=3)
],
train_ckpt_nodes=['backbone.layers.{}'.format(i) for i in range(12)])
# device config
options_cfg = dict(
randomSeed=42,
partialsType='half',
train_cfg=dict(
executionStrategy='SameAsIpu',
Training=dict(gradientAccumulation=32),
availableMemoryProportion=[0.3, 0.3, 0.3, 0.3],
),
eval_cfg=dict(deviceIterations=1, ),
)
# add model partition config and device config to runner
runner = dict(
type=IterBasedRunner,
ipu_model_cfg=ipu_model_cfg,
options_cfg=options_cfg,
max_iters=5000)
default_hooks = dict(checkpoint=dict(type=CheckpointHook, interval=1000))
fp16 = dict(loss_scale=256.0, velocity_accum_type='half', accum_type='half')