ignore ipu
parent
92a87a8848
commit
743ed01cdf
|
@ -1,125 +0,0 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmcv.transforms import (CenterCrop, ImageToTensor, Normalize, Resize,
|
||||
ToTensor)
|
||||
from mmengine.config import read_base
|
||||
from mmengine.model import PretrainedInit
|
||||
from mmengine.optim import CosineAnnealingLR, LinearLR
|
||||
from mmengine.runner import CheckpointHook, IterBasedRunner
|
||||
from torch.optim import SGD
|
||||
|
||||
from mmpretrain.datasets import Collect
|
||||
|
||||
with read_base():
|
||||
from .._base_.datasets.imagenet_bs64_pil_resize_autoaug import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.vit_base_p16 import *
|
||||
|
||||
# specific to vit pretrain
|
||||
paramwise_cfg = dict(custom_keys={
|
||||
'.cls_token': dict(decay_mult=0.0),
|
||||
'.pos_embed': dict(decay_mult=0.0)
|
||||
})
|
||||
|
||||
pretrained = 'https://download.openmmlab.com/mmclassification/v0/vit/pretrain/vit-base-p16_3rdparty_pt-64xb64_in1k-224_20210928-02284250.pth' # noqa
|
||||
|
||||
model = dict(
|
||||
head=dict(
|
||||
loss=dict(type=CrossEntropyLoss, loss_weight=1.0, _delete_=True), ),
|
||||
backbone=dict(
|
||||
img_size=224,
|
||||
init_cfg=dict(
|
||||
type=PretrainedInit,
|
||||
checkpoint=pretrained,
|
||||
_delete_=True,
|
||||
prefix='backbone')))
|
||||
|
||||
img_norm_cfg = dict(
|
||||
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)
|
||||
|
||||
train_pipeline = [
|
||||
dict(type=LoadImageFromFile),
|
||||
dict(type=RandomResizedCrop, scale=224, backend='pillow'),
|
||||
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
|
||||
dict(type=Normalize, **img_norm_cfg),
|
||||
dict(type=ImageToTensor, keys=['img']),
|
||||
dict(type=ToTensor, keys=['gt_label']),
|
||||
dict(type=ToHalf, keys=['img']),
|
||||
dict(type=Collect, keys=['img', 'gt_label'])
|
||||
]
|
||||
|
||||
test_pipeline = [
|
||||
dict(type=LoadImageFromFile),
|
||||
dict(type=Resize, scale=(224, -1), keep_ratio=True, backend='pillow'),
|
||||
dict(type=CenterCrop, crop_size=224),
|
||||
dict(type=Normalize, **img_norm_cfg),
|
||||
dict(type=ImageToTensor, keys=['img']),
|
||||
dict(type=ToHalf, keys=['img']),
|
||||
dict(type=Collect, keys=['img'])
|
||||
]
|
||||
|
||||
# change batch size
|
||||
data = dict(
|
||||
samples_per_gpu=17,
|
||||
workers_per_gpu=16,
|
||||
drop_last=True,
|
||||
train=dict(pipeline=train_pipeline),
|
||||
train_dataloader=dict(mode='async'),
|
||||
val=dict(pipeline=test_pipeline, ),
|
||||
val_dataloader=dict(samples_per_gpu=4, workers_per_gpu=1),
|
||||
test=dict(pipeline=test_pipeline),
|
||||
test_dataloader=dict(samples_per_gpu=4, workers_per_gpu=1))
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(
|
||||
type=SGD,
|
||||
lr=0.08,
|
||||
weight_decay=1e-5,
|
||||
momentum=0.9,
|
||||
paramwise_cfg=paramwise_cfg,
|
||||
)
|
||||
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(type=LinearLR, start_factor=0.02, by_epoch=False, begin=0, end=800),
|
||||
dict(
|
||||
type=CosineAnnealingLR,
|
||||
T_max=4200,
|
||||
by_epoch=False,
|
||||
begin=800,
|
||||
end=5000)
|
||||
]
|
||||
|
||||
# ipu cfg
|
||||
# model partition config
|
||||
ipu_model_cfg = dict(
|
||||
train_split_edges=[
|
||||
dict(layer_to_call='backbone.patch_embed', ipu_id=0),
|
||||
dict(layer_to_call='backbone.layers.3', ipu_id=1),
|
||||
dict(layer_to_call='backbone.layers.6', ipu_id=2),
|
||||
dict(layer_to_call='backbone.layers.9', ipu_id=3)
|
||||
],
|
||||
train_ckpt_nodes=['backbone.layers.{}'.format(i) for i in range(12)])
|
||||
|
||||
# device config
|
||||
options_cfg = dict(
|
||||
randomSeed=42,
|
||||
partialsType='half',
|
||||
train_cfg=dict(
|
||||
executionStrategy='SameAsIpu',
|
||||
Training=dict(gradientAccumulation=32),
|
||||
availableMemoryProportion=[0.3, 0.3, 0.3, 0.3],
|
||||
),
|
||||
eval_cfg=dict(deviceIterations=1, ),
|
||||
)
|
||||
|
||||
# add model partition config and device config to runner
|
||||
runner = dict(
|
||||
type=IterBasedRunner,
|
||||
ipu_model_cfg=ipu_model_cfg,
|
||||
options_cfg=options_cfg,
|
||||
max_iters=5000)
|
||||
|
||||
default_hooks = dict(checkpoint=dict(type=CheckpointHook, interval=1000))
|
||||
|
||||
fp16 = dict(loss_scale=256.0, velocity_accum_type='half', accum_type='half')
|
Loading…
Reference in New Issue