merge master

pull/2/head
lixiaojie 2020-06-12 16:16:28 +08:00
commit 75858a3d3e
8 changed files with 883 additions and 9 deletions

View File

@ -28,7 +28,7 @@ test:
- pip install pillow==6.2.2
- pip install -e .
- python -c "import mmcls; print(mmcls.__version__)"
# - echo "Start testing..."
# - pip install pytest coverage
# - coverage run --source mmcls -m pytest tests/
# - coverage report -m
- echo "Start testing..."
- pip install pytest coverage
- coverage run --source mmcls -m pytest tests/
- coverage report -m

View File

@ -1,4 +1,4 @@
from .builder import build_model
from .registry import MODELS
from .backbones import * # noqa: F401,F403
from .builder import BACKBONES, MODELS, build_backbone, build_model
__all__ = ['build_model', 'MODELS']
__all__ = ['BACKBONES', 'MODELS', 'build_backbone', 'build_model']

View File

@ -1,3 +1,4 @@
from .resnet import ResNet, ResNetV1d
from .shufflenet_v2 import ShuffleNetv2
__all__ = ['ShuffleNetv2']
__all__ = ['ResNet', 'ResNetV1d', 'ShuffleNetv2']

View File

@ -6,22 +6,50 @@ from mmcv.runner import load_checkpoint
class BaseBackbone(nn.Module, metaclass=ABCMeta):
"""Base backbone.
This class defines the basic functions of a backbone.
Any backbone that inherits this class should at least
define its own `forward` function.
"""
def __init__(self):
super(BaseBackbone, self).__init__()
def init_weights(self, pretrained=None):
"""Init backbone weights
Args:
pretrained (str | None): If pretrained is a string, then it
initializes backbone weights by loading the pretrained
checkpoint. If pretrained is None, then it follows default
initializer or customized initializer in subclasses.
"""
if isinstance(pretrained, str):
logger = logging.getLogger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
# use default initializer or customized initializer in subclasses
pass
else:
raise TypeError('pretrained must be a str or None')
raise TypeError('pretrained must be a str or None.'
f' But received {type(pretrained)}.')
@abstractmethod
def forward(self, x):
"""Forward computation
Args:
x (tensor | tuple[tensor]): x could be a Torch.tensor or a tuple of
Torch.tensor, containing input data for forward computation.
"""
pass
def train(self, mode=True):
"""Set module status before forward computation
Args:
mode (bool): Whether it is train_mode or test_mode
"""
super(BaseBackbone, self).train(mode)

View File

@ -0,0 +1,532 @@
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import (build_conv_layer, build_norm_layer, constant_init,
kaiming_init)
from torch.nn.modules.batchnorm import _BatchNorm
from ..builder import BACKBONES
from .base_backbone import BaseBackbone
class BasicBlock(nn.Module):
expansion = 1
def __init__(self,
inplanes,
planes,
stride=1,
dilation=1,
downsample=None,
style='pytorch',
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN')):
super(BasicBlock, self).__init__()
self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
self.conv1 = build_conv_layer(
conv_cfg,
inplanes,
planes,
3,
stride=stride,
padding=dilation,
dilation=dilation,
bias=False)
self.add_module(self.norm1_name, norm1)
self.conv2 = build_conv_layer(
conv_cfg, planes, planes, 3, padding=1, bias=False)
self.add_module(self.norm2_name, norm2)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
self.dilation = dilation
self.with_cp = with_cp
@property
def norm1(self):
return getattr(self, self.norm1_name)
@property
def norm2(self):
return getattr(self, self.norm2_name)
def forward(self, x):
def _inner_forward(x):
identity = x
out = self.conv1(x)
out = self.norm1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.norm2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self,
inplanes,
planes,
stride=1,
dilation=1,
downsample=None,
style='pytorch',
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN')):
"""Bottleneck block for ResNet.
If style is "pytorch", the stride-two layer is the 3x3 conv layer,
if it is "caffe", the stride-two layer is the first 1x1 conv layer.
"""
super(Bottleneck, self).__init__()
assert style in ['pytorch', 'caffe']
self.inplanes = inplanes
self.planes = planes
self.stride = stride
self.dilation = dilation
self.style = style
self.with_cp = with_cp
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
if self.style == 'pytorch':
self.conv1_stride = 1
self.conv2_stride = stride
else:
self.conv1_stride = stride
self.conv2_stride = 1
self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
self.norm3_name, norm3 = build_norm_layer(
norm_cfg, planes * self.expansion, postfix=3)
self.conv1 = build_conv_layer(
conv_cfg,
inplanes,
planes,
kernel_size=1,
stride=self.conv1_stride,
bias=False)
self.add_module(self.norm1_name, norm1)
self.conv2 = build_conv_layer(
conv_cfg,
planes,
planes,
kernel_size=3,
stride=self.conv2_stride,
padding=dilation,
dilation=dilation,
bias=False)
self.add_module(self.norm2_name, norm2)
self.conv3 = build_conv_layer(
conv_cfg,
planes,
planes * self.expansion,
kernel_size=1,
bias=False)
self.add_module(self.norm3_name, norm3)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
@property
def norm1(self):
return getattr(self, self.norm1_name)
@property
def norm2(self):
return getattr(self, self.norm2_name)
@property
def norm3(self):
return getattr(self, self.norm3_name)
def forward(self, x):
def _inner_forward(x):
identity = x
out = self.conv1(x)
out = self.norm1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.norm2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.norm3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.relu(out)
return out
class ResLayer(nn.Sequential):
"""ResLayer to build ResNet style backbone.
Args:
block (nn.Module): block used to build ResLayer.
inplanes (int): inplanes of block.
planes (int): planes of block.
num_blocks (int): number of blocks.
stride (int): stride of the first block. Default: 1
avg_down (bool): Use AvgPool instead of stride conv when
downsampling in the bottleneck. Default: False
conv_cfg (dict): dictionary to construct and config conv layer.
Default: None
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
"""
def __init__(self,
block,
inplanes,
planes,
num_blocks,
stride=1,
avg_down=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
**kwargs):
self.block = block
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = []
conv_stride = stride
if avg_down and stride != 1:
conv_stride = 1
downsample.append(
nn.AvgPool2d(
kernel_size=stride,
stride=stride,
ceil_mode=True,
count_include_pad=False))
downsample.extend([
build_conv_layer(
conv_cfg,
inplanes,
planes * block.expansion,
kernel_size=1,
stride=conv_stride,
bias=False),
build_norm_layer(norm_cfg, planes * block.expansion)[1]
])
downsample = nn.Sequential(*downsample)
layers = []
layers.append(
block(
inplanes=inplanes,
planes=planes,
stride=stride,
downsample=downsample,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
**kwargs))
inplanes = planes * block.expansion
for i in range(1, num_blocks):
layers.append(
block(
inplanes=inplanes,
planes=planes,
stride=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
**kwargs))
super(ResLayer, self).__init__(*layers)
@BACKBONES.register_module()
class ResNet(BaseBackbone):
"""ResNet backbone.
Args:
depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
in_channels (int): Number of input image channels. Normally 3.
base_channels (int): Number of base channels of hidden layer.
num_stages (int): Resnet stages, normally 4.
strides (Sequence[int]): Strides of the first block of each stage.
dilations (Sequence[int]): Dilation of each stage.
out_indices (Sequence[int]): Output from which stages.
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv
avg_down (bool): Use AvgPool instead of stride conv when
downsampling in the bottleneck.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters.
norm_cfg (dict): Dictionary to construct and config norm layer.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.
zero_init_residual (bool): Whether to use zero init for last norm layer
in resblocks to let them behave as identity.
Example:
>>> from mmcls.models import ResNet
>>> import torch
>>> self = ResNet(depth=18)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 32, 32)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 64, 8, 8)
(1, 128, 4, 4)
(1, 256, 2, 2)
(1, 512, 1, 1)
"""
arch_settings = {
18: (BasicBlock, (2, 2, 2, 2)),
34: (BasicBlock, (3, 4, 6, 3)),
50: (Bottleneck, (3, 4, 6, 3)),
101: (Bottleneck, (3, 4, 23, 3)),
152: (Bottleneck, (3, 8, 36, 3))
}
def __init__(self,
depth,
in_channels=3,
base_channels=64,
num_stages=4,
strides=(1, 2, 2, 2),
dilations=(1, 1, 1, 1),
out_indices=(3, ),
style='pytorch',
deep_stem=False,
avg_down=False,
frozen_stages=-1,
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
with_cp=False,
zero_init_residual=True):
super(ResNet, self).__init__()
if depth not in self.arch_settings:
raise KeyError(f'invalid depth {depth} for resnet')
self.depth = depth
self.base_channels = base_channels
self.num_stages = num_stages
assert num_stages >= 1 and num_stages <= 4
self.strides = strides
self.dilations = dilations
assert len(strides) == len(dilations) == num_stages
self.out_indices = out_indices
assert max(out_indices) < num_stages
self.style = style
self.deep_stem = deep_stem
self.avg_down = avg_down
self.frozen_stages = frozen_stages
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.with_cp = with_cp
self.norm_eval = norm_eval
self.zero_init_residual = zero_init_residual
self.block, stage_blocks = self.arch_settings[depth]
self.stage_blocks = stage_blocks[:num_stages]
self.inplanes = base_channels
self._make_stem_layer(in_channels, base_channels)
self.res_layers = []
for i, num_blocks in enumerate(self.stage_blocks):
stride = strides[i]
dilation = dilations[i]
planes = base_channels * 2**i
res_layer = self.make_res_layer(
block=self.block,
inplanes=self.inplanes,
planes=planes,
num_blocks=num_blocks,
stride=stride,
dilation=dilation,
style=self.style,
avg_down=self.avg_down,
with_cp=with_cp,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg)
self.inplanes = planes * self.block.expansion
layer_name = f'layer{i + 1}'
self.add_module(layer_name, res_layer)
self.res_layers.append(layer_name)
self._freeze_stages()
self.feat_dim = self.block.expansion * base_channels * 2**(
len(self.stage_blocks) - 1)
def make_res_layer(self, **kwargs):
return ResLayer(**kwargs)
@property
def norm1(self):
return getattr(self, self.norm1_name)
def _make_stem_layer(self, in_channels, base_channels):
if self.deep_stem:
self.stem = nn.Sequential(
build_conv_layer(
self.conv_cfg,
in_channels,
base_channels // 2,
kernel_size=3,
stride=2,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg, base_channels // 2)[1],
nn.ReLU(inplace=True),
build_conv_layer(
self.conv_cfg,
base_channels // 2,
base_channels // 2,
kernel_size=3,
stride=1,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg, base_channels // 2)[1],
nn.ReLU(inplace=True),
build_conv_layer(
self.conv_cfg,
base_channels // 2,
base_channels,
kernel_size=3,
stride=1,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg, base_channels)[1],
nn.ReLU(inplace=True))
else:
self.conv1 = build_conv_layer(
self.conv_cfg,
in_channels,
base_channels,
kernel_size=7,
stride=2,
padding=3,
bias=False)
self.norm1_name, norm1 = build_norm_layer(
self.norm_cfg, base_channels, postfix=1)
self.add_module(self.norm1_name, norm1)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
def _freeze_stages(self):
if self.frozen_stages >= 0:
if self.deep_stem:
self.stem.eval()
for param in self.stem.parameters():
param.requires_grad = False
else:
self.norm1.eval()
for m in [self.conv1, self.norm1]:
for param in m.parameters():
param.requires_grad = False
for i in range(1, self.frozen_stages + 1):
m = getattr(self, f'layer{i}')
m.eval()
for param in m.parameters():
param.requires_grad = False
def init_weights(self, pretrained=None):
super(ResNet, self).init_weights(pretrained)
if pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m, 1)
if self.zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
constant_init(m.norm3, 0)
elif isinstance(m, BasicBlock):
constant_init(m.norm2, 0)
def forward(self, x):
if self.deep_stem:
x = self.stem(x)
else:
x = self.conv1(x)
x = self.norm1(x)
x = self.relu(x)
x = self.maxpool(x)
outs = []
for i, layer_name in enumerate(self.res_layers):
res_layer = getattr(self, layer_name)
x = res_layer(x)
if i in self.out_indices:
outs.append(x)
if len(outs) == 1:
return outs[0]
else:
return tuple(outs)
def train(self, mode=True):
super(ResNet, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()
@BACKBONES.register_module()
class ResNetV1d(ResNet):
"""ResNetV1d variant described in
`Bag of Tricks <https://arxiv.org/pdf/1812.01187.pdf>`_.
Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv
in the input stem with three 3x3 convs. And in the downsampling block,
a 2x2 avg_pool with stride 2 is added before conv, whose stride is
changed to 1.
"""
def __init__(self, **kwargs):
super(ResNetV1d, self).__init__(
deep_stem=True, avg_down=True, **kwargs)

View File

@ -1,6 +1,7 @@
import torch.nn as nn
from mmcv.utils import Registry, build_from_cfg
BACKBONES = Registry('backbone')
MODELS = Registry('model')
@ -14,5 +15,9 @@ def build(cfg, registry, default_args=None):
return build_from_cfg(cfg, registry, default_args)
def build_backbone(cfg):
return build(cfg, BACKBONES)
def build_model(cfg, train_cfg=None, test_cfg=None):
return build(cfg, MODELS, dict(train_cfg=train_cfg, test_cfg=test_cfg))

View File

@ -0,0 +1,308 @@
import pytest
import torch
from torch.nn.modules import AvgPool2d
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import ResNet, ResNetV1d
from mmcls.models.backbones.resnet import BasicBlock, Bottleneck, ResLayer
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (BasicBlock, Bottleneck)):
return True
return False
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (_BatchNorm, )):
return True
return False
def all_zeros(modules):
"""Check if the weight(and bias) is all zero."""
weight_zero = torch.equal(modules.weight.data,
torch.zeros_like(modules.weight.data))
if hasattr(modules, 'bias'):
bias_zero = torch.equal(modules.bias.data,
torch.zeros_like(modules.bias.data))
else:
bias_zero = True
return weight_zero and bias_zero
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_resnet_basic_block():
# Test BasicBlock structure and forward
block = BasicBlock(64, 64)
assert block.conv1.in_channels == 64
assert block.conv1.out_channels == 64
assert block.conv1.kernel_size == (3, 3)
assert block.conv2.in_channels == 64
assert block.conv2.out_channels == 64
assert block.conv2.kernel_size == (3, 3)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test BasicBlock with checkpoint forward
block = BasicBlock(64, 64, with_cp=True)
assert block.with_cp
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
def test_resnet_bottleneck():
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
Bottleneck(64, 64, style='tensorflow')
# Test Bottleneck with checkpoint forward
block = Bottleneck(64, 16, with_cp=True)
assert block.with_cp
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test Bottleneck style
block = Bottleneck(64, 64, stride=2, style='pytorch')
assert block.conv1.stride == (1, 1)
assert block.conv2.stride == (2, 2)
block = Bottleneck(64, 64, stride=2, style='caffe')
assert block.conv1.stride == (2, 2)
assert block.conv2.stride == (1, 1)
# Test Bottleneck forward
block = Bottleneck(64, 16)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
def test_resnet_res_layer():
# Test ResLayer of 3 Bottleneck w\o downsample
layer = ResLayer(Bottleneck, 64, 16, 3)
assert len(layer) == 3
assert layer[0].conv1.in_channels == 64
assert layer[0].conv1.out_channels == 16
for i in range(1, len(layer)):
assert layer[i].conv1.in_channels == 64
assert layer[i].conv1.out_channels == 16
for i in range(len(layer)):
assert layer[i].downsample is None
x = torch.randn(1, 64, 56, 56)
x_out = layer(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test ResLayer of 3 Bottleneck with downsample
layer = ResLayer(Bottleneck, 64, 64, 3)
assert layer[0].downsample[0].out_channels == 256
for i in range(1, len(layer)):
assert layer[i].downsample is None
x = torch.randn(1, 64, 56, 56)
x_out = layer(x)
assert x_out.shape == torch.Size([1, 256, 56, 56])
# Test ResLayer of 3 Bottleneck with stride=2
layer = ResLayer(Bottleneck, 64, 64, 3, stride=2)
assert layer[0].downsample[0].out_channels == 256
assert layer[0].downsample[0].stride == (2, 2)
for i in range(1, len(layer)):
assert layer[i].downsample is None
x = torch.randn(1, 64, 56, 56)
x_out = layer(x)
assert x_out.shape == torch.Size([1, 256, 28, 28])
# Test ResLayer of 3 Bottleneck with stride=2 and average downsample
layer = ResLayer(Bottleneck, 64, 64, 3, stride=2, avg_down=True)
assert isinstance(layer[0].downsample[0], AvgPool2d)
assert layer[0].downsample[1].out_channels == 256
assert layer[0].downsample[1].stride == (1, 1)
for i in range(1, len(layer)):
assert layer[i].downsample is None
x = torch.randn(1, 64, 56, 56)
x_out = layer(x)
assert x_out.shape == torch.Size([1, 256, 28, 28])
def test_resnet_backbone():
"""Test resnet backbone"""
with pytest.raises(KeyError):
# ResNet depth should be in [18, 34, 50, 101, 152]
ResNet(20)
with pytest.raises(AssertionError):
# In ResNet: 1 <= num_stages <= 4
ResNet(50, num_stages=0)
with pytest.raises(AssertionError):
# In ResNet: 1 <= num_stages <= 4
ResNet(50, num_stages=5)
with pytest.raises(AssertionError):
# len(strides) == len(dilations) == num_stages
ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3)
with pytest.raises(TypeError):
# pretrained must be a string path
model = ResNet(50)
model.init_weights(pretrained=0)
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
ResNet(50, style='tensorflow')
# Test ResNet50 norm_eval=True
model = ResNet(50, norm_eval=True)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test ResNet50 with torchvision pretrained weight
model = ResNet(depth=50, norm_eval=True)
model.init_weights('torchvision://resnet50')
model.train()
assert check_norm_state(model.modules(), False)
# Test ResNet50 with first stage frozen
frozen_stages = 1
model = ResNet(50, frozen_stages=frozen_stages)
model.init_weights()
model.train()
assert model.norm1.training is False
for layer in [model.conv1, model.norm1]:
for param in layer.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test ResNet50V1d with first stage frozen
model = ResNetV1d(depth=50, frozen_stages=frozen_stages)
assert len(model.stem) == 9
model.init_weights()
model.train()
check_norm_state(model.stem, False)
for param in model.stem.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test ResNet18 forward
model = ResNet(18, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 64, 56, 56])
assert feat[1].shape == torch.Size([1, 128, 28, 28])
assert feat[2].shape == torch.Size([1, 256, 14, 14])
assert feat[3].shape == torch.Size([1, 512, 7, 7])
# Test ResNet50 with BatchNorm forward
model = ResNet(50, out_indices=(0, 1, 2, 3))
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
# Test ResNet50 with layers 1, 2, 3 out forward
model = ResNet(50, out_indices=(0, 1, 2))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 3
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
# Test ResNet50 with layers 3 (top feature maps) out forward
model = ResNet(50, out_indices=(3, ))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat.shape == torch.Size([1, 2048, 7, 7])
# Test ResNet50 with checkpoint forward
model = ResNet(50, out_indices=(0, 1, 2, 3), with_cp=True)
for m in model.modules():
if is_block(m):
assert m.with_cp
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
# Test ResNet50 zero initialization of residual
model = ResNet(50, out_indices=(0, 1, 2, 3), zero_init_residual=True)
model.init_weights()
for m in model.modules():
if isinstance(m, Bottleneck):
assert all_zeros(m.norm3)
elif isinstance(m, BasicBlock):
assert all_zeros(m.norm2)
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
# Test ResNetV1d forward
model = ResNetV1d(depth=50, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])