merge master
commit
75858a3d3e
|
@ -28,7 +28,7 @@ test:
|
|||
- pip install pillow==6.2.2
|
||||
- pip install -e .
|
||||
- python -c "import mmcls; print(mmcls.__version__)"
|
||||
# - echo "Start testing..."
|
||||
# - pip install pytest coverage
|
||||
# - coverage run --source mmcls -m pytest tests/
|
||||
# - coverage report -m
|
||||
- echo "Start testing..."
|
||||
- pip install pytest coverage
|
||||
- coverage run --source mmcls -m pytest tests/
|
||||
- coverage report -m
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from .builder import build_model
|
||||
from .registry import MODELS
|
||||
from .backbones import * # noqa: F401,F403
|
||||
from .builder import BACKBONES, MODELS, build_backbone, build_model
|
||||
|
||||
__all__ = ['build_model', 'MODELS']
|
||||
__all__ = ['BACKBONES', 'MODELS', 'build_backbone', 'build_model']
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
from .resnet import ResNet, ResNetV1d
|
||||
from .shufflenet_v2 import ShuffleNetv2
|
||||
|
||||
__all__ = ['ShuffleNetv2']
|
||||
__all__ = ['ResNet', 'ResNetV1d', 'ShuffleNetv2']
|
||||
|
|
|
@ -6,22 +6,50 @@ from mmcv.runner import load_checkpoint
|
|||
|
||||
|
||||
class BaseBackbone(nn.Module, metaclass=ABCMeta):
|
||||
"""Base backbone.
|
||||
|
||||
This class defines the basic functions of a backbone.
|
||||
Any backbone that inherits this class should at least
|
||||
define its own `forward` function.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(BaseBackbone, self).__init__()
|
||||
|
||||
def init_weights(self, pretrained=None):
|
||||
"""Init backbone weights
|
||||
|
||||
Args:
|
||||
pretrained (str | None): If pretrained is a string, then it
|
||||
initializes backbone weights by loading the pretrained
|
||||
checkpoint. If pretrained is None, then it follows default
|
||||
initializer or customized initializer in subclasses.
|
||||
"""
|
||||
if isinstance(pretrained, str):
|
||||
logger = logging.getLogger()
|
||||
load_checkpoint(self, pretrained, strict=False, logger=logger)
|
||||
elif pretrained is None:
|
||||
# use default initializer or customized initializer in subclasses
|
||||
pass
|
||||
else:
|
||||
raise TypeError('pretrained must be a str or None')
|
||||
raise TypeError('pretrained must be a str or None.'
|
||||
f' But received {type(pretrained)}.')
|
||||
|
||||
@abstractmethod
|
||||
def forward(self, x):
|
||||
"""Forward computation
|
||||
|
||||
Args:
|
||||
x (tensor | tuple[tensor]): x could be a Torch.tensor or a tuple of
|
||||
Torch.tensor, containing input data for forward computation.
|
||||
"""
|
||||
pass
|
||||
|
||||
def train(self, mode=True):
|
||||
"""Set module status before forward computation
|
||||
|
||||
Args:
|
||||
mode (bool): Whether it is train_mode or test_mode
|
||||
"""
|
||||
super(BaseBackbone, self).train(mode)
|
||||
|
|
|
@ -0,0 +1,532 @@
|
|||
import torch.nn as nn
|
||||
import torch.utils.checkpoint as cp
|
||||
from mmcv.cnn import (build_conv_layer, build_norm_layer, constant_init,
|
||||
kaiming_init)
|
||||
from torch.nn.modules.batchnorm import _BatchNorm
|
||||
|
||||
from ..builder import BACKBONES
|
||||
from .base_backbone import BaseBackbone
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self,
|
||||
inplanes,
|
||||
planes,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
downsample=None,
|
||||
style='pytorch',
|
||||
with_cp=False,
|
||||
conv_cfg=None,
|
||||
norm_cfg=dict(type='BN')):
|
||||
super(BasicBlock, self).__init__()
|
||||
|
||||
self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
|
||||
self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
|
||||
|
||||
self.conv1 = build_conv_layer(
|
||||
conv_cfg,
|
||||
inplanes,
|
||||
planes,
|
||||
3,
|
||||
stride=stride,
|
||||
padding=dilation,
|
||||
dilation=dilation,
|
||||
bias=False)
|
||||
self.add_module(self.norm1_name, norm1)
|
||||
self.conv2 = build_conv_layer(
|
||||
conv_cfg, planes, planes, 3, padding=1, bias=False)
|
||||
self.add_module(self.norm2_name, norm2)
|
||||
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
self.dilation = dilation
|
||||
self.with_cp = with_cp
|
||||
|
||||
@property
|
||||
def norm1(self):
|
||||
return getattr(self, self.norm1_name)
|
||||
|
||||
@property
|
||||
def norm2(self):
|
||||
return getattr(self, self.norm2_name)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
def _inner_forward(x):
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.norm1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.norm2(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
out += identity
|
||||
|
||||
return out
|
||||
|
||||
if self.with_cp and x.requires_grad:
|
||||
out = cp.checkpoint(_inner_forward, x)
|
||||
else:
|
||||
out = _inner_forward(x)
|
||||
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self,
|
||||
inplanes,
|
||||
planes,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
downsample=None,
|
||||
style='pytorch',
|
||||
with_cp=False,
|
||||
conv_cfg=None,
|
||||
norm_cfg=dict(type='BN')):
|
||||
"""Bottleneck block for ResNet.
|
||||
If style is "pytorch", the stride-two layer is the 3x3 conv layer,
|
||||
if it is "caffe", the stride-two layer is the first 1x1 conv layer.
|
||||
"""
|
||||
super(Bottleneck, self).__init__()
|
||||
assert style in ['pytorch', 'caffe']
|
||||
|
||||
self.inplanes = inplanes
|
||||
self.planes = planes
|
||||
self.stride = stride
|
||||
self.dilation = dilation
|
||||
self.style = style
|
||||
self.with_cp = with_cp
|
||||
self.conv_cfg = conv_cfg
|
||||
self.norm_cfg = norm_cfg
|
||||
|
||||
if self.style == 'pytorch':
|
||||
self.conv1_stride = 1
|
||||
self.conv2_stride = stride
|
||||
else:
|
||||
self.conv1_stride = stride
|
||||
self.conv2_stride = 1
|
||||
|
||||
self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
|
||||
self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
|
||||
self.norm3_name, norm3 = build_norm_layer(
|
||||
norm_cfg, planes * self.expansion, postfix=3)
|
||||
|
||||
self.conv1 = build_conv_layer(
|
||||
conv_cfg,
|
||||
inplanes,
|
||||
planes,
|
||||
kernel_size=1,
|
||||
stride=self.conv1_stride,
|
||||
bias=False)
|
||||
self.add_module(self.norm1_name, norm1)
|
||||
self.conv2 = build_conv_layer(
|
||||
conv_cfg,
|
||||
planes,
|
||||
planes,
|
||||
kernel_size=3,
|
||||
stride=self.conv2_stride,
|
||||
padding=dilation,
|
||||
dilation=dilation,
|
||||
bias=False)
|
||||
|
||||
self.add_module(self.norm2_name, norm2)
|
||||
self.conv3 = build_conv_layer(
|
||||
conv_cfg,
|
||||
planes,
|
||||
planes * self.expansion,
|
||||
kernel_size=1,
|
||||
bias=False)
|
||||
self.add_module(self.norm3_name, norm3)
|
||||
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
|
||||
@property
|
||||
def norm1(self):
|
||||
return getattr(self, self.norm1_name)
|
||||
|
||||
@property
|
||||
def norm2(self):
|
||||
return getattr(self, self.norm2_name)
|
||||
|
||||
@property
|
||||
def norm3(self):
|
||||
return getattr(self, self.norm3_name)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
def _inner_forward(x):
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.norm1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.norm2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.norm3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
out += identity
|
||||
|
||||
return out
|
||||
|
||||
if self.with_cp and x.requires_grad:
|
||||
out = cp.checkpoint(_inner_forward, x)
|
||||
else:
|
||||
out = _inner_forward(x)
|
||||
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResLayer(nn.Sequential):
|
||||
"""ResLayer to build ResNet style backbone.
|
||||
|
||||
Args:
|
||||
block (nn.Module): block used to build ResLayer.
|
||||
inplanes (int): inplanes of block.
|
||||
planes (int): planes of block.
|
||||
num_blocks (int): number of blocks.
|
||||
stride (int): stride of the first block. Default: 1
|
||||
avg_down (bool): Use AvgPool instead of stride conv when
|
||||
downsampling in the bottleneck. Default: False
|
||||
conv_cfg (dict): dictionary to construct and config conv layer.
|
||||
Default: None
|
||||
norm_cfg (dict): dictionary to construct and config norm layer.
|
||||
Default: dict(type='BN')
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
block,
|
||||
inplanes,
|
||||
planes,
|
||||
num_blocks,
|
||||
stride=1,
|
||||
avg_down=False,
|
||||
conv_cfg=None,
|
||||
norm_cfg=dict(type='BN'),
|
||||
**kwargs):
|
||||
self.block = block
|
||||
|
||||
downsample = None
|
||||
if stride != 1 or inplanes != planes * block.expansion:
|
||||
downsample = []
|
||||
conv_stride = stride
|
||||
if avg_down and stride != 1:
|
||||
conv_stride = 1
|
||||
downsample.append(
|
||||
nn.AvgPool2d(
|
||||
kernel_size=stride,
|
||||
stride=stride,
|
||||
ceil_mode=True,
|
||||
count_include_pad=False))
|
||||
downsample.extend([
|
||||
build_conv_layer(
|
||||
conv_cfg,
|
||||
inplanes,
|
||||
planes * block.expansion,
|
||||
kernel_size=1,
|
||||
stride=conv_stride,
|
||||
bias=False),
|
||||
build_norm_layer(norm_cfg, planes * block.expansion)[1]
|
||||
])
|
||||
downsample = nn.Sequential(*downsample)
|
||||
|
||||
layers = []
|
||||
layers.append(
|
||||
block(
|
||||
inplanes=inplanes,
|
||||
planes=planes,
|
||||
stride=stride,
|
||||
downsample=downsample,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
**kwargs))
|
||||
inplanes = planes * block.expansion
|
||||
for i in range(1, num_blocks):
|
||||
layers.append(
|
||||
block(
|
||||
inplanes=inplanes,
|
||||
planes=planes,
|
||||
stride=1,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
**kwargs))
|
||||
super(ResLayer, self).__init__(*layers)
|
||||
|
||||
|
||||
@BACKBONES.register_module()
|
||||
class ResNet(BaseBackbone):
|
||||
"""ResNet backbone.
|
||||
|
||||
Args:
|
||||
depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
|
||||
in_channels (int): Number of input image channels. Normally 3.
|
||||
base_channels (int): Number of base channels of hidden layer.
|
||||
num_stages (int): Resnet stages, normally 4.
|
||||
strides (Sequence[int]): Strides of the first block of each stage.
|
||||
dilations (Sequence[int]): Dilation of each stage.
|
||||
out_indices (Sequence[int]): Output from which stages.
|
||||
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
|
||||
layer is the 3x3 conv layer, otherwise the stride-two layer is
|
||||
the first 1x1 conv layer.
|
||||
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv
|
||||
avg_down (bool): Use AvgPool instead of stride conv when
|
||||
downsampling in the bottleneck.
|
||||
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
||||
-1 means not freezing any parameters.
|
||||
norm_cfg (dict): Dictionary to construct and config norm layer.
|
||||
norm_eval (bool): Whether to set norm layers to eval mode, namely,
|
||||
freeze running stats (mean and var). Note: Effect on Batch Norm
|
||||
and its variants only.
|
||||
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
|
||||
memory while slowing down the training speed.
|
||||
zero_init_residual (bool): Whether to use zero init for last norm layer
|
||||
in resblocks to let them behave as identity.
|
||||
|
||||
Example:
|
||||
>>> from mmcls.models import ResNet
|
||||
>>> import torch
|
||||
>>> self = ResNet(depth=18)
|
||||
>>> self.eval()
|
||||
>>> inputs = torch.rand(1, 3, 32, 32)
|
||||
>>> level_outputs = self.forward(inputs)
|
||||
>>> for level_out in level_outputs:
|
||||
... print(tuple(level_out.shape))
|
||||
(1, 64, 8, 8)
|
||||
(1, 128, 4, 4)
|
||||
(1, 256, 2, 2)
|
||||
(1, 512, 1, 1)
|
||||
"""
|
||||
|
||||
arch_settings = {
|
||||
18: (BasicBlock, (2, 2, 2, 2)),
|
||||
34: (BasicBlock, (3, 4, 6, 3)),
|
||||
50: (Bottleneck, (3, 4, 6, 3)),
|
||||
101: (Bottleneck, (3, 4, 23, 3)),
|
||||
152: (Bottleneck, (3, 8, 36, 3))
|
||||
}
|
||||
|
||||
def __init__(self,
|
||||
depth,
|
||||
in_channels=3,
|
||||
base_channels=64,
|
||||
num_stages=4,
|
||||
strides=(1, 2, 2, 2),
|
||||
dilations=(1, 1, 1, 1),
|
||||
out_indices=(3, ),
|
||||
style='pytorch',
|
||||
deep_stem=False,
|
||||
avg_down=False,
|
||||
frozen_stages=-1,
|
||||
conv_cfg=None,
|
||||
norm_cfg=dict(type='BN', requires_grad=True),
|
||||
norm_eval=True,
|
||||
with_cp=False,
|
||||
zero_init_residual=True):
|
||||
super(ResNet, self).__init__()
|
||||
if depth not in self.arch_settings:
|
||||
raise KeyError(f'invalid depth {depth} for resnet')
|
||||
self.depth = depth
|
||||
self.base_channels = base_channels
|
||||
self.num_stages = num_stages
|
||||
assert num_stages >= 1 and num_stages <= 4
|
||||
self.strides = strides
|
||||
self.dilations = dilations
|
||||
assert len(strides) == len(dilations) == num_stages
|
||||
self.out_indices = out_indices
|
||||
assert max(out_indices) < num_stages
|
||||
self.style = style
|
||||
self.deep_stem = deep_stem
|
||||
self.avg_down = avg_down
|
||||
self.frozen_stages = frozen_stages
|
||||
self.conv_cfg = conv_cfg
|
||||
self.norm_cfg = norm_cfg
|
||||
self.with_cp = with_cp
|
||||
self.norm_eval = norm_eval
|
||||
self.zero_init_residual = zero_init_residual
|
||||
self.block, stage_blocks = self.arch_settings[depth]
|
||||
self.stage_blocks = stage_blocks[:num_stages]
|
||||
self.inplanes = base_channels
|
||||
|
||||
self._make_stem_layer(in_channels, base_channels)
|
||||
|
||||
self.res_layers = []
|
||||
for i, num_blocks in enumerate(self.stage_blocks):
|
||||
stride = strides[i]
|
||||
dilation = dilations[i]
|
||||
planes = base_channels * 2**i
|
||||
res_layer = self.make_res_layer(
|
||||
block=self.block,
|
||||
inplanes=self.inplanes,
|
||||
planes=planes,
|
||||
num_blocks=num_blocks,
|
||||
stride=stride,
|
||||
dilation=dilation,
|
||||
style=self.style,
|
||||
avg_down=self.avg_down,
|
||||
with_cp=with_cp,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg)
|
||||
self.inplanes = planes * self.block.expansion
|
||||
layer_name = f'layer{i + 1}'
|
||||
self.add_module(layer_name, res_layer)
|
||||
self.res_layers.append(layer_name)
|
||||
|
||||
self._freeze_stages()
|
||||
|
||||
self.feat_dim = self.block.expansion * base_channels * 2**(
|
||||
len(self.stage_blocks) - 1)
|
||||
|
||||
def make_res_layer(self, **kwargs):
|
||||
return ResLayer(**kwargs)
|
||||
|
||||
@property
|
||||
def norm1(self):
|
||||
return getattr(self, self.norm1_name)
|
||||
|
||||
def _make_stem_layer(self, in_channels, base_channels):
|
||||
if self.deep_stem:
|
||||
self.stem = nn.Sequential(
|
||||
build_conv_layer(
|
||||
self.conv_cfg,
|
||||
in_channels,
|
||||
base_channels // 2,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1,
|
||||
bias=False),
|
||||
build_norm_layer(self.norm_cfg, base_channels // 2)[1],
|
||||
nn.ReLU(inplace=True),
|
||||
build_conv_layer(
|
||||
self.conv_cfg,
|
||||
base_channels // 2,
|
||||
base_channels // 2,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
bias=False),
|
||||
build_norm_layer(self.norm_cfg, base_channels // 2)[1],
|
||||
nn.ReLU(inplace=True),
|
||||
build_conv_layer(
|
||||
self.conv_cfg,
|
||||
base_channels // 2,
|
||||
base_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
bias=False),
|
||||
build_norm_layer(self.norm_cfg, base_channels)[1],
|
||||
nn.ReLU(inplace=True))
|
||||
else:
|
||||
self.conv1 = build_conv_layer(
|
||||
self.conv_cfg,
|
||||
in_channels,
|
||||
base_channels,
|
||||
kernel_size=7,
|
||||
stride=2,
|
||||
padding=3,
|
||||
bias=False)
|
||||
self.norm1_name, norm1 = build_norm_layer(
|
||||
self.norm_cfg, base_channels, postfix=1)
|
||||
self.add_module(self.norm1_name, norm1)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
|
||||
def _freeze_stages(self):
|
||||
if self.frozen_stages >= 0:
|
||||
if self.deep_stem:
|
||||
self.stem.eval()
|
||||
for param in self.stem.parameters():
|
||||
param.requires_grad = False
|
||||
else:
|
||||
self.norm1.eval()
|
||||
for m in [self.conv1, self.norm1]:
|
||||
for param in m.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
for i in range(1, self.frozen_stages + 1):
|
||||
m = getattr(self, f'layer{i}')
|
||||
m.eval()
|
||||
for param in m.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def init_weights(self, pretrained=None):
|
||||
super(ResNet, self).init_weights(pretrained)
|
||||
if pretrained is None:
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
kaiming_init(m)
|
||||
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
|
||||
constant_init(m, 1)
|
||||
|
||||
if self.zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, Bottleneck):
|
||||
constant_init(m.norm3, 0)
|
||||
elif isinstance(m, BasicBlock):
|
||||
constant_init(m.norm2, 0)
|
||||
|
||||
def forward(self, x):
|
||||
if self.deep_stem:
|
||||
x = self.stem(x)
|
||||
else:
|
||||
x = self.conv1(x)
|
||||
x = self.norm1(x)
|
||||
x = self.relu(x)
|
||||
x = self.maxpool(x)
|
||||
outs = []
|
||||
for i, layer_name in enumerate(self.res_layers):
|
||||
res_layer = getattr(self, layer_name)
|
||||
x = res_layer(x)
|
||||
if i in self.out_indices:
|
||||
outs.append(x)
|
||||
if len(outs) == 1:
|
||||
return outs[0]
|
||||
else:
|
||||
return tuple(outs)
|
||||
|
||||
def train(self, mode=True):
|
||||
super(ResNet, self).train(mode)
|
||||
self._freeze_stages()
|
||||
if mode and self.norm_eval:
|
||||
for m in self.modules():
|
||||
# trick: eval have effect on BatchNorm only
|
||||
if isinstance(m, _BatchNorm):
|
||||
m.eval()
|
||||
|
||||
|
||||
@BACKBONES.register_module()
|
||||
class ResNetV1d(ResNet):
|
||||
"""ResNetV1d variant described in
|
||||
`Bag of Tricks <https://arxiv.org/pdf/1812.01187.pdf>`_.
|
||||
|
||||
Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv
|
||||
in the input stem with three 3x3 convs. And in the downsampling block,
|
||||
a 2x2 avg_pool with stride 2 is added before conv, whose stride is
|
||||
changed to 1.
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super(ResNetV1d, self).__init__(
|
||||
deep_stem=True, avg_down=True, **kwargs)
|
|
@ -1,6 +1,7 @@
|
|||
import torch.nn as nn
|
||||
from mmcv.utils import Registry, build_from_cfg
|
||||
|
||||
BACKBONES = Registry('backbone')
|
||||
MODELS = Registry('model')
|
||||
|
||||
|
||||
|
@ -14,5 +15,9 @@ def build(cfg, registry, default_args=None):
|
|||
return build_from_cfg(cfg, registry, default_args)
|
||||
|
||||
|
||||
def build_backbone(cfg):
|
||||
return build(cfg, BACKBONES)
|
||||
|
||||
|
||||
def build_model(cfg, train_cfg=None, test_cfg=None):
|
||||
return build(cfg, MODELS, dict(train_cfg=train_cfg, test_cfg=test_cfg))
|
||||
|
|
|
@ -0,0 +1,308 @@
|
|||
import pytest
|
||||
import torch
|
||||
from torch.nn.modules import AvgPool2d
|
||||
from torch.nn.modules.batchnorm import _BatchNorm
|
||||
|
||||
from mmcls.models.backbones import ResNet, ResNetV1d
|
||||
from mmcls.models.backbones.resnet import BasicBlock, Bottleneck, ResLayer
|
||||
|
||||
|
||||
def is_block(modules):
|
||||
"""Check if is ResNet building block."""
|
||||
if isinstance(modules, (BasicBlock, Bottleneck)):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def is_norm(modules):
|
||||
"""Check if is one of the norms."""
|
||||
if isinstance(modules, (_BatchNorm, )):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def all_zeros(modules):
|
||||
"""Check if the weight(and bias) is all zero."""
|
||||
weight_zero = torch.equal(modules.weight.data,
|
||||
torch.zeros_like(modules.weight.data))
|
||||
if hasattr(modules, 'bias'):
|
||||
bias_zero = torch.equal(modules.bias.data,
|
||||
torch.zeros_like(modules.bias.data))
|
||||
else:
|
||||
bias_zero = True
|
||||
|
||||
return weight_zero and bias_zero
|
||||
|
||||
|
||||
def check_norm_state(modules, train_state):
|
||||
"""Check if norm layer is in correct train state."""
|
||||
for mod in modules:
|
||||
if isinstance(mod, _BatchNorm):
|
||||
if mod.training != train_state:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def test_resnet_basic_block():
|
||||
# Test BasicBlock structure and forward
|
||||
block = BasicBlock(64, 64)
|
||||
assert block.conv1.in_channels == 64
|
||||
assert block.conv1.out_channels == 64
|
||||
assert block.conv1.kernel_size == (3, 3)
|
||||
assert block.conv2.in_channels == 64
|
||||
assert block.conv2.out_channels == 64
|
||||
assert block.conv2.kernel_size == (3, 3)
|
||||
x = torch.randn(1, 64, 56, 56)
|
||||
x_out = block(x)
|
||||
assert x_out.shape == torch.Size([1, 64, 56, 56])
|
||||
|
||||
# Test BasicBlock with checkpoint forward
|
||||
block = BasicBlock(64, 64, with_cp=True)
|
||||
assert block.with_cp
|
||||
x = torch.randn(1, 64, 56, 56)
|
||||
x_out = block(x)
|
||||
assert x_out.shape == torch.Size([1, 64, 56, 56])
|
||||
|
||||
|
||||
def test_resnet_bottleneck():
|
||||
|
||||
with pytest.raises(AssertionError):
|
||||
# Style must be in ['pytorch', 'caffe']
|
||||
Bottleneck(64, 64, style='tensorflow')
|
||||
|
||||
# Test Bottleneck with checkpoint forward
|
||||
block = Bottleneck(64, 16, with_cp=True)
|
||||
assert block.with_cp
|
||||
x = torch.randn(1, 64, 56, 56)
|
||||
x_out = block(x)
|
||||
assert x_out.shape == torch.Size([1, 64, 56, 56])
|
||||
|
||||
# Test Bottleneck style
|
||||
block = Bottleneck(64, 64, stride=2, style='pytorch')
|
||||
assert block.conv1.stride == (1, 1)
|
||||
assert block.conv2.stride == (2, 2)
|
||||
block = Bottleneck(64, 64, stride=2, style='caffe')
|
||||
assert block.conv1.stride == (2, 2)
|
||||
assert block.conv2.stride == (1, 1)
|
||||
|
||||
# Test Bottleneck forward
|
||||
block = Bottleneck(64, 16)
|
||||
x = torch.randn(1, 64, 56, 56)
|
||||
x_out = block(x)
|
||||
assert x_out.shape == torch.Size([1, 64, 56, 56])
|
||||
|
||||
|
||||
def test_resnet_res_layer():
|
||||
# Test ResLayer of 3 Bottleneck w\o downsample
|
||||
layer = ResLayer(Bottleneck, 64, 16, 3)
|
||||
assert len(layer) == 3
|
||||
assert layer[0].conv1.in_channels == 64
|
||||
assert layer[0].conv1.out_channels == 16
|
||||
for i in range(1, len(layer)):
|
||||
assert layer[i].conv1.in_channels == 64
|
||||
assert layer[i].conv1.out_channels == 16
|
||||
for i in range(len(layer)):
|
||||
assert layer[i].downsample is None
|
||||
x = torch.randn(1, 64, 56, 56)
|
||||
x_out = layer(x)
|
||||
assert x_out.shape == torch.Size([1, 64, 56, 56])
|
||||
|
||||
# Test ResLayer of 3 Bottleneck with downsample
|
||||
layer = ResLayer(Bottleneck, 64, 64, 3)
|
||||
assert layer[0].downsample[0].out_channels == 256
|
||||
for i in range(1, len(layer)):
|
||||
assert layer[i].downsample is None
|
||||
x = torch.randn(1, 64, 56, 56)
|
||||
x_out = layer(x)
|
||||
assert x_out.shape == torch.Size([1, 256, 56, 56])
|
||||
|
||||
# Test ResLayer of 3 Bottleneck with stride=2
|
||||
layer = ResLayer(Bottleneck, 64, 64, 3, stride=2)
|
||||
assert layer[0].downsample[0].out_channels == 256
|
||||
assert layer[0].downsample[0].stride == (2, 2)
|
||||
for i in range(1, len(layer)):
|
||||
assert layer[i].downsample is None
|
||||
x = torch.randn(1, 64, 56, 56)
|
||||
x_out = layer(x)
|
||||
assert x_out.shape == torch.Size([1, 256, 28, 28])
|
||||
|
||||
# Test ResLayer of 3 Bottleneck with stride=2 and average downsample
|
||||
layer = ResLayer(Bottleneck, 64, 64, 3, stride=2, avg_down=True)
|
||||
assert isinstance(layer[0].downsample[0], AvgPool2d)
|
||||
assert layer[0].downsample[1].out_channels == 256
|
||||
assert layer[0].downsample[1].stride == (1, 1)
|
||||
for i in range(1, len(layer)):
|
||||
assert layer[i].downsample is None
|
||||
x = torch.randn(1, 64, 56, 56)
|
||||
x_out = layer(x)
|
||||
assert x_out.shape == torch.Size([1, 256, 28, 28])
|
||||
|
||||
|
||||
def test_resnet_backbone():
|
||||
"""Test resnet backbone"""
|
||||
with pytest.raises(KeyError):
|
||||
# ResNet depth should be in [18, 34, 50, 101, 152]
|
||||
ResNet(20)
|
||||
|
||||
with pytest.raises(AssertionError):
|
||||
# In ResNet: 1 <= num_stages <= 4
|
||||
ResNet(50, num_stages=0)
|
||||
|
||||
with pytest.raises(AssertionError):
|
||||
# In ResNet: 1 <= num_stages <= 4
|
||||
ResNet(50, num_stages=5)
|
||||
|
||||
with pytest.raises(AssertionError):
|
||||
# len(strides) == len(dilations) == num_stages
|
||||
ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3)
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
# pretrained must be a string path
|
||||
model = ResNet(50)
|
||||
model.init_weights(pretrained=0)
|
||||
|
||||
with pytest.raises(AssertionError):
|
||||
# Style must be in ['pytorch', 'caffe']
|
||||
ResNet(50, style='tensorflow')
|
||||
|
||||
# Test ResNet50 norm_eval=True
|
||||
model = ResNet(50, norm_eval=True)
|
||||
model.init_weights()
|
||||
model.train()
|
||||
assert check_norm_state(model.modules(), False)
|
||||
|
||||
# Test ResNet50 with torchvision pretrained weight
|
||||
model = ResNet(depth=50, norm_eval=True)
|
||||
model.init_weights('torchvision://resnet50')
|
||||
model.train()
|
||||
assert check_norm_state(model.modules(), False)
|
||||
|
||||
# Test ResNet50 with first stage frozen
|
||||
frozen_stages = 1
|
||||
model = ResNet(50, frozen_stages=frozen_stages)
|
||||
model.init_weights()
|
||||
model.train()
|
||||
assert model.norm1.training is False
|
||||
for layer in [model.conv1, model.norm1]:
|
||||
for param in layer.parameters():
|
||||
assert param.requires_grad is False
|
||||
for i in range(1, frozen_stages + 1):
|
||||
layer = getattr(model, f'layer{i}')
|
||||
for mod in layer.modules():
|
||||
if isinstance(mod, _BatchNorm):
|
||||
assert mod.training is False
|
||||
for param in layer.parameters():
|
||||
assert param.requires_grad is False
|
||||
|
||||
# Test ResNet50V1d with first stage frozen
|
||||
model = ResNetV1d(depth=50, frozen_stages=frozen_stages)
|
||||
assert len(model.stem) == 9
|
||||
model.init_weights()
|
||||
model.train()
|
||||
check_norm_state(model.stem, False)
|
||||
for param in model.stem.parameters():
|
||||
assert param.requires_grad is False
|
||||
for i in range(1, frozen_stages + 1):
|
||||
layer = getattr(model, f'layer{i}')
|
||||
for mod in layer.modules():
|
||||
if isinstance(mod, _BatchNorm):
|
||||
assert mod.training is False
|
||||
for param in layer.parameters():
|
||||
assert param.requires_grad is False
|
||||
|
||||
# Test ResNet18 forward
|
||||
model = ResNet(18, out_indices=(0, 1, 2, 3))
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 224, 224)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 4
|
||||
assert feat[0].shape == torch.Size([1, 64, 56, 56])
|
||||
assert feat[1].shape == torch.Size([1, 128, 28, 28])
|
||||
assert feat[2].shape == torch.Size([1, 256, 14, 14])
|
||||
assert feat[3].shape == torch.Size([1, 512, 7, 7])
|
||||
|
||||
# Test ResNet50 with BatchNorm forward
|
||||
model = ResNet(50, out_indices=(0, 1, 2, 3))
|
||||
for m in model.modules():
|
||||
if is_norm(m):
|
||||
assert isinstance(m, _BatchNorm)
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 224, 224)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 4
|
||||
assert feat[0].shape == torch.Size([1, 256, 56, 56])
|
||||
assert feat[1].shape == torch.Size([1, 512, 28, 28])
|
||||
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
|
||||
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
|
||||
|
||||
# Test ResNet50 with layers 1, 2, 3 out forward
|
||||
model = ResNet(50, out_indices=(0, 1, 2))
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 224, 224)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 3
|
||||
assert feat[0].shape == torch.Size([1, 256, 56, 56])
|
||||
assert feat[1].shape == torch.Size([1, 512, 28, 28])
|
||||
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
|
||||
|
||||
# Test ResNet50 with layers 3 (top feature maps) out forward
|
||||
model = ResNet(50, out_indices=(3, ))
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 224, 224)
|
||||
feat = model(imgs)
|
||||
assert feat.shape == torch.Size([1, 2048, 7, 7])
|
||||
|
||||
# Test ResNet50 with checkpoint forward
|
||||
model = ResNet(50, out_indices=(0, 1, 2, 3), with_cp=True)
|
||||
for m in model.modules():
|
||||
if is_block(m):
|
||||
assert m.with_cp
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 224, 224)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 4
|
||||
assert feat[0].shape == torch.Size([1, 256, 56, 56])
|
||||
assert feat[1].shape == torch.Size([1, 512, 28, 28])
|
||||
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
|
||||
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
|
||||
|
||||
# Test ResNet50 zero initialization of residual
|
||||
model = ResNet(50, out_indices=(0, 1, 2, 3), zero_init_residual=True)
|
||||
model.init_weights()
|
||||
for m in model.modules():
|
||||
if isinstance(m, Bottleneck):
|
||||
assert all_zeros(m.norm3)
|
||||
elif isinstance(m, BasicBlock):
|
||||
assert all_zeros(m.norm2)
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 224, 224)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 4
|
||||
assert feat[0].shape == torch.Size([1, 256, 56, 56])
|
||||
assert feat[1].shape == torch.Size([1, 512, 28, 28])
|
||||
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
|
||||
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
|
||||
|
||||
# Test ResNetV1d forward
|
||||
model = ResNetV1d(depth=50, out_indices=(0, 1, 2, 3))
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 224, 224)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 4
|
||||
assert feat[0].shape == torch.Size([1, 256, 56, 56])
|
||||
assert feat[1].shape == torch.Size([1, 512, 28, 28])
|
||||
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
|
||||
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
|
Loading…
Reference in New Issue