set arch etc

pull/1780/head
John 2023-09-06 23:56:03 +08:00
parent b0b4422736
commit 7734f073e4
10 changed files with 114 additions and 34 deletions

View File

@ -16,12 +16,12 @@ with read_base():
# model settings
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin-large_3rdparty_in21k-384px.pth' # noqa
model = dict(
type=ImageClassifier,
model.update(
backbone=dict(
arch='large',
init_cfg=dict(
type=PretrainedInit, checkpoint=checkpoint, prefix='backbone')),
head=dict(num_classes=200, ))
head=dict(num_classes=200, in_channels=1536))
# schedule settings
optim_wrapper = dict(

View File

@ -1,6 +1,9 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import CutMix, Mixup
with read_base():
from .._base_.datasets.imagenet21k_bs128 import *
@ -9,10 +12,17 @@ with read_base():
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
# model settings
model = dict(
backbone=dict(img_size=192, window_size=[12, 12, 12, 6]),
model.update(
backbone=dict(
img_size=192, drop_path_rate=0.5, window_size=[12, 12, 12, 6]),
head=dict(num_classes=21841),
)
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))
# dataset settings
data_preprocessor = dict(num_classes=21841)

View File

@ -1,6 +1,9 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import CutMix, Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_swin_256 import *
@ -8,4 +11,14 @@ with read_base():
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
model = dict(backbone=dict(window_size=[16, 16, 16, 8]))
# model settings
model.update(
backbone=dict(
img_size=256, drop_path_rate=0.5, window_size=[16, 16, 16, 8]),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))

View File

@ -1,8 +1,9 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import ImageClassifier
from mmpretrain.models import CutMix, Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_swin_256 import *
@ -10,9 +11,16 @@ with read_base():
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
model = dict(
type=ImageClassifier,
# model settings
model.update(
backbone=dict(
img_size=256,
window_size=[16, 16, 16, 8],
drop_path_rate=0.2,
pretrained_window_sizes=[12, 12, 12, 6]))
pretrained_window_sizes=[12, 12, 12, 6]),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))

View File

@ -2,18 +2,13 @@
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmpretrain.models import ImageClassifier
with read_base():
from .._base_.datasets.imagenet_bs64_swin_384 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
model = dict(
type=ImageClassifier,
# model settings
model.update(
backbone=dict(
img_size=384,
window_size=[24, 24, 24, 12],
drop_path_rate=0.2,
pretrained_window_sizes=[12, 12, 12, 6]))
window_size=[24, 24, 24, 12], pretrained_window_sizes=[12, 12, 12, 6]))

View File

@ -1,6 +1,9 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import CutMix, Mixup
with read_base():
from .._base_.datasets.imagenet21k_bs128 import *
@ -9,10 +12,17 @@ with read_base():
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
# model settings
model = dict(
backbone=dict(img_size=192, window_size=[12, 12, 12, 6]),
model.update(
backbone=dict(
img_size=192, drop_path_rate=0.5, window_size=[12, 12, 12, 6]),
head=dict(num_classes=21841),
)
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))
# dataset settings
data_preprocessor = dict(num_classes=21841)

View File

@ -3,7 +3,7 @@
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmpretrain.models import ImageClassifier
from mmpretrain.models import CrossEntropyLoss
with read_base():
from .._base_.datasets.imagenet_bs64_swin_256 import *
@ -11,8 +11,14 @@ with read_base():
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
model = dict(
type=ImageClassifier,
# model settings
model.update(
backbone=dict(
window_size=[16, 16, 16, 8], pretrained_window_sizes=[12, 12, 12, 6]),
)
arch='large',
img_size=256,
window_size=[16, 16, 16, 8],
pretrained_window_sizes=[12, 12, 12, 6]),
head=dict(
in_channels=1536,
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
topk=(1, 5)))

View File

@ -3,7 +3,7 @@
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmpretrain.models import ImageClassifier
from mmpretrain.models import CrossEntropyLoss
with read_base():
from .._base_.datasets.imagenet_bs64_swin_384 import *
@ -11,10 +11,14 @@ with read_base():
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
model = dict(
type=ImageClassifier,
# model settings
model.update(
backbone=dict(
arch='large',
img_size=384,
window_size=[24, 24, 24, 12],
pretrained_window_sizes=[12, 12, 12, 6]),
)
head=dict(
in_channels=1536,
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
topk=(1, 5)))

View File

@ -1,6 +1,9 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import CutMix, Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_swin_256 import *
@ -8,4 +11,18 @@ with read_base():
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
model = dict(backbone=dict(window_size=[16, 16, 16, 8]))
# model settings
model.update(
backbone=dict(
arch='small',
img_size=256,
drop_path_rate=0.3,
window_size=[16, 16, 16, 8]),
head=dict(in_channels=768),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))

View File

@ -1,6 +1,9 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import CutMix, Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_swin_256 import *
@ -8,4 +11,18 @@ with read_base():
from .._base_.models.swin_transformer_v2_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
model = dict(backbone=dict(window_size=[16, 16, 16, 8]))
# model settings
model.update(
backbone=dict(
arch='tiny',
img_size=256,
drop_path_rate=0.2,
window_size=[16, 16, 16, 8]),
head=dict(in_channels=768),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))