finish 4 vit_large*.py
parent
b22e3eb031
commit
7d8aa8f782
|
@ -1,6 +1,6 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmpretrain.models import (VisionTransformer, ImageClassifier, VisionTransformerClsHead)
|
||||
from mmpretrain.models import (VisionTransformer, ImageClassifier, VisionTransformerClsHead, CrossEntropyLoss)
|
||||
|
||||
from mmengine.model.weight_init import KaimingInit
|
||||
|
||||
|
@ -25,6 +25,6 @@ model = dict(
|
|||
type=VisionTransformerClsHead,
|
||||
num_classes=1000,
|
||||
in_channels=1024,
|
||||
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
|
||||
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
|
||||
topk=(1, 5),
|
||||
))
|
|
@ -1,7 +1,6 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmpretrain.models import (VisionTransformer, ImageClassifier, VisionTransformerClsHead)
|
||||
|
||||
from mmpretrain.models import (VisionTransformer, ImageClassifier, VisionTransformerClsHead, CrossEntropyLoss)
|
||||
from mmengine.model.weight_init import KaimingInit
|
||||
|
||||
# model settings
|
||||
|
@ -25,6 +24,6 @@ model = dict(
|
|||
type=VisionTransformerClsHead,
|
||||
num_classes=1000,
|
||||
in_channels=768,
|
||||
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
|
||||
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
|
||||
topk=(1, 5),
|
||||
))
|
|
@ -0,0 +1,29 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmpretrain.models import (VisionTransformer, ImageClassifier, VisionTransformerClsHead, CrossEntropyLoss)
|
||||
from mmengine.model.weight_init import KaimingInit
|
||||
|
||||
# model settings
|
||||
model = dict(
|
||||
type=ImageClassifier,
|
||||
backbone=dict(
|
||||
type=VisionTransformer,
|
||||
arch='l',
|
||||
img_size=224,
|
||||
patch_size=16,
|
||||
drop_rate=0.1,
|
||||
init_cfg=[
|
||||
dict(
|
||||
type=KaimingInit,
|
||||
layer='Conv2d',
|
||||
mode='fan_in',
|
||||
nonlinearity='linear')
|
||||
]),
|
||||
neck=None,
|
||||
head=dict(
|
||||
type=VisionTransformerClsHead,
|
||||
num_classes=1000,
|
||||
in_channels=1024,
|
||||
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
|
||||
topk=(1, 5),
|
||||
))
|
|
@ -0,0 +1,29 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmpretrain.models import (VisionTransformer, ImageClassifier, VisionTransformerClsHead, CrossEntropyLoss)
|
||||
from mmengine.model.weight_init import KaimingInit
|
||||
|
||||
# model settings
|
||||
model = dict(
|
||||
type=ImageClassifier,
|
||||
backbone=dict(
|
||||
type=VisionTransformer,
|
||||
arch='l',
|
||||
img_size=224,
|
||||
patch_size=32,
|
||||
drop_rate=0.1,
|
||||
init_cfg=[
|
||||
dict(
|
||||
type=KaimingInit,
|
||||
layer='Conv2d',
|
||||
mode='fan_in',
|
||||
nonlinearity='linear')
|
||||
]),
|
||||
neck=None,
|
||||
head=dict(
|
||||
type=VisionTransformerClsHead,
|
||||
num_classes=1000,
|
||||
in_channels=1024,
|
||||
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
|
||||
topk=(1, 5),
|
||||
))
|
|
@ -14,7 +14,6 @@ with read_base():
|
|||
from .._base_.schedules.imagenet_bs4096_AdamW import *
|
||||
from .._base_.default_runtime import *
|
||||
|
||||
|
||||
# model setting
|
||||
model = dict(backbone=dict(img_size=384))
|
||||
|
||||
|
|
|
@ -0,0 +1,20 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmengine.config import read_base
|
||||
from mmpretrain.models import Mixup
|
||||
|
||||
with read_base():
|
||||
from .._base_.models.vit_large_p16 import *
|
||||
from .._base_.datasets.imagenet_bs64_pil_resize_autoaug import *
|
||||
from .._base_.schedules.imagenet_bs4096_AdamW import *
|
||||
from .._base_.default_runtime import *
|
||||
|
||||
|
||||
# model setting
|
||||
model = dict(
|
||||
head=dict(hidden_dim=3072),
|
||||
train_cfg=dict(augments=dict(type=Mixup, alpha=0.2)),
|
||||
)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
|
@ -0,0 +1,48 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmengine.config import read_base
|
||||
|
||||
from mmcv.transforms import (LoadImageFromFile, RandomFlip)
|
||||
|
||||
from mmpretrain.datasets import (CenterCrop, LoadImageFromFile,
|
||||
PackInputs, RandomFlip, RandomResizedCrop,
|
||||
ResizeEdge)
|
||||
|
||||
with read_base():
|
||||
from .._base_.models.vit_large_p16 import *
|
||||
from .._base_.datasets.imagenet_bs64_pil_resize import *
|
||||
from .._base_.schedules.imagenet_bs4096_AdamW import *
|
||||
from .._base_.default_runtime import *
|
||||
|
||||
|
||||
# model setting
|
||||
model = dict(backbone=dict(img_size=384))
|
||||
|
||||
# dataset setting
|
||||
data_preprocessor = dict(
|
||||
mean=[127.5, 127.5, 127.5],
|
||||
std=[127.5, 127.5, 127.5],
|
||||
# convert image from BGR to RGB
|
||||
to_rgb=True,
|
||||
)
|
||||
|
||||
train_pipeline = [
|
||||
dict(type=LoadImageFromFile),
|
||||
dict(type=RandomResizedCrop, scale=384, backend='pillow'),
|
||||
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
|
||||
dict(type=PackInputs),
|
||||
]
|
||||
|
||||
test_pipeline = [
|
||||
dict(type=LoadImageFromFile),
|
||||
dict(type=ResizeEdge, scale=384, edge='short', backend='pillow'),
|
||||
dict(type=CenterCrop, crop_size=384),
|
||||
dict(type=PackInputs),
|
||||
]
|
||||
|
||||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
|
@ -0,0 +1,19 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmengine.config import read_base
|
||||
from mmpretrain.models import Mixup
|
||||
|
||||
with read_base():
|
||||
from .._base_.models.vit_large_p32 import *
|
||||
from .._base_.datasets.imagenet_bs64_pil_resize_autoaug import *
|
||||
from .._base_.schedules.imagenet_bs4096_AdamW import *
|
||||
from .._base_.default_runtime import *
|
||||
|
||||
# model setting
|
||||
model = dict(
|
||||
head=dict(hidden_dim=3072),
|
||||
train_cfg=dict(augments=dict(type=Mixup, alpha=0.2)),
|
||||
)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
|
@ -0,0 +1,45 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmengine.config import read_base
|
||||
from mmcv.transforms import (LoadImageFromFile, RandomFlip)
|
||||
from mmpretrain.datasets import (CenterCrop, LoadImageFromFile,
|
||||
PackInputs, RandomFlip, RandomResizedCrop,
|
||||
ResizeEdge)
|
||||
|
||||
with read_base():
|
||||
from .._base_.models.vit_large_p32 import *
|
||||
from .._base_.datasets.imagenet_bs64_pil_resize import *
|
||||
from .._base_.schedules.imagenet_bs4096_AdamW import *
|
||||
from .._base_.default_runtime import *
|
||||
|
||||
# model setting
|
||||
model = dict(backbone=dict(img_size=384))
|
||||
|
||||
# dataset setting
|
||||
data_preprocessor = dict(
|
||||
mean=[127.5, 127.5, 127.5],
|
||||
std=[127.5, 127.5, 127.5],
|
||||
# convert image from BGR to RGB
|
||||
to_rgb=True,
|
||||
)
|
||||
|
||||
train_pipeline = [
|
||||
dict(type=LoadImageFromFile),
|
||||
dict(type=RandomResizedCrop, scale=384, backend='pillow'),
|
||||
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
|
||||
dict(type=PackInputs),
|
||||
]
|
||||
|
||||
test_pipeline = [
|
||||
dict(type=LoadImageFromFile),
|
||||
dict(type=ResizeEdge, scale=384, edge='short', backend='pillow'),
|
||||
dict(type=CenterCrop, crop_size=384),
|
||||
dict(type=PackInputs),
|
||||
]
|
||||
|
||||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
Loading…
Reference in New Issue