merge master

pull/2/head
lixiaojie 2020-06-15 20:46:30 +08:00
parent cf85db0f7c
commit 8249ad7205
2 changed files with 2 additions and 69 deletions
mmcls/models/backbones
tests/test_backbones

View File

@ -4,60 +4,10 @@ import torch.utils.checkpoint as cp
from mmcv.cnn import ConvModule, constant_init, kaiming_init
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.utils import channel_shuffle
from .base_backbone import BaseBackbone
def channel_shuffle(x, groups):
""" Channel Shuffle operation.
This function enables cross-group information flow for multiple groups
convolution layers.
Args:
x (Tensor): The input tensor.
groups (int): The number of groups to divide the input tensor
in the channel dimension.
Returns:
Tensor: The output tensor after channel shuffle operation.
"""
batchsize, num_channels, height, width = x.size()
assert (num_channels % groups == 0), ('num_channels should be '
'divisible by groups')
channels_per_group = num_channels // groups
x = x.view(batchsize, groups, channels_per_group, height, width)
x = torch.transpose(x, 1, 2).contiguous()
x = x.view(batchsize, -1, height, width)
return x
def make_divisible(value, divisor, min_value=None):
""" Make divisible function.
This function ensures that all layers have a channel number that is
divisible by divisor.
Args:
value (int): The original channel number.
divisor (int): The divisor to fully divide the channel number.
min_value (int, optional): The minimum value of the output channel.
Returns:
int: The modified output channel number
"""
if min_value is None:
min_value = divisor
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_value < 0.9 * value:
new_value += divisor
return new_value
class InvertedResidual(nn.Module):
"""InvertedResidual block for ShuffleNetV2 backbone.

View File

@ -4,9 +4,7 @@ from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import ShuffleNetv2
from mmcls.models.backbones.shufflenet_v2 import (InvertedResidual,
channel_shuffle,
make_divisible)
from mmcls.models.backbones.shufflenet_v2 import InvertedResidual
def is_block(modules):
@ -32,21 +30,6 @@ def check_norm_state(modules, train_state):
return True
def test_channel_shuffle():
x = torch.randn(1, 24, 56, 56)
with pytest.raises(AssertionError):
# num_channels should be divisible by groups
channel_shuffle(x, 7)
def test_make_divisible():
# test min_value is None
make_divisible(34, 8, None)
# test new_value < 0.9 * value
make_divisible(10, 8, None)
def test_shufflenetv2_invertedresidual():
with pytest.raises(AssertionError):