pull/1545/merge
Om 2024-11-21 17:59:58 +00:00 committed by GitHub
commit 842d3dadf0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 260 additions and 0 deletions
configs/_base_/models
mmpretrain/models/backbones
tests/test_models/test_backbones

View File

@ -0,0 +1,12 @@
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='MobileNetV1', width_mult=1.0),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))

View File

@ -0,0 +1,133 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import ConvModule
from torch.nn.modules.batchnorm import _BatchNorm
from mmpretrain.registry import MODELS
from .base_backbone import BaseBackbone
@MODELS.register_module()
class MobileNetV1(BaseBackbone):
"""MobileNetV1 backbone for image classification.
Args:
input_channels (int): The input channels of the image tensor.
conv_cfg (dict): Config dict for convolution layer. Default: None.
frozen_stages (int): Stages to be frozen (all param fixed).
-1 means not freezing any parameters.
Default: -1.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU').
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
with_cp (bool): Use checkpoint or not.
Using checkpoint will save some memory while slowing down the
training speed.
Default: False.
init_cfg (list[dict]): Initialization config dict. Default: [
dict(type='Kaiming', layer=['Conv2d']),
dict(type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm'])
].
"""
def __init__(self,
input_channels,
conv_cfg=None,
frozen_stages=-1,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
norm_eval=False,
with_cp=False,
init_cfg=[
dict(type='Kaiming', layer=['Conv2d']),
dict(
type='Constant',
val=1,
layer=['_BatchNorm', 'GroupNorm'])
]):
super(MobileNetV1, self).__init__(init_cfg)
self.arch_settings = [[32, 64, 1], [64, 128, 2], [128, 128, 1],
[128, 256, 2], [256, 256, 1], [256, 512, 2],
[512, 512, 1], [512, 512, 1], [512, 512, 1],
[512, 512, 1], [512, 512, 1], [512, 1024, 2],
[1024, 1024, 1]]
if frozen_stages not in range(-1, 8):
raise ValueError('frozen_stages must be in range(-1, 8). '
f'But received {frozen_stages}')
self.in_channels = input_channels
self.frozen_stages = frozen_stages
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.norm_eval = norm_eval
self.with_cp = with_cp
self.layers = []
# Add the first convolution layer to layers
layer = ConvModule(
in_channels=self.in_channels,
out_channels=32,
kernel_size=3,
stride=2,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.layers.append(layer)
for layer_cfg in (self.arch_settings):
in_ch, out_ch, stride = layer_cfg
intermediate_layer = []
depthwise_layer = ConvModule(
in_channels=in_ch,
out_channels=in_ch,
kernel_size=3,
stride=stride,
padding=1,
groups=in_ch,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
pointwise_layer = ConvModule(
in_channels=in_ch,
out_channels=out_ch,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
intermediate_layer = nn.Sequential(depthwise_layer,
pointwise_layer)
self.layers.append(intermediate_layer)
self.model = nn.Sequential(*self.layers)
def forward(self, x):
outs = []
for i, layer_name in enumerate(self.layers):
layer = getattr(self, layer_name)
x = layer(x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)
def _freeze_stages(self):
if self.frozen_stages >= 0:
for i in range(0, self.frozen_stages + 1):
layer = getattr(self, f'layer{i}')
layer.eval()
for param in layer.parameters():
param.requires_grad = False
def train(self, mode=True):
super(MobileNetV1, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()

View File

@ -0,0 +1,115 @@
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmpretrain.models.backbones import MobileNetV1
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_mobilenetv1_backbone():
with pytest.raises(TypeError):
# pretrained must be a string path
model = MobileNetV1()
model.init_weights(pretrained=0)
with pytest.raises(ValueError):
# frozen_stages must in range(-1, 8)
MobileNetV1(frozen_stages=8)
# Test MobileNetV2 with first stage frozen
frozen_stages = 1
model = MobileNetV1(frozen_stages=frozen_stages)
model.init_weights()
model.train()
for mod in model.modules():
for param in mod.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test MobileNetV2 with norm_eval=True
model = MobileNetV1(norm_eval=True)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test MobileNetV2 forward with dict(type='ReLU')
model = MobileNetV1(act_cfg=dict(type='ReLU'))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
# Test MobileNetV2 with BatchNorm forward
model = MobileNetV1()
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
# Test MobileNetV2 with GroupNorm forward
model = MobileNetV1(
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True))
for m in model.modules():
if is_norm(m):
assert isinstance(m, GroupNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))