[Feature]: Add scienceqa metric

pull/1577/head
liuyuan 2023-05-19 18:35:44 +08:00
parent 1b8e86dca6
commit 87f849cbb6
3 changed files with 199 additions and 1 deletions

View File

@ -3,6 +3,7 @@ from .caption import COCOCaption
from .multi_label import AveragePrecision, MultiLabelMetric
from .multi_task import MultiTasksMetric
from .retrieval import RetrievalRecall
from .scienceqa import ScienceQAMetric
from .single_label import Accuracy, ConfusionMatrix, SingleLabelMetric
from .visual_grounding_eval import VisualGroundingMetric
from .voc_multi_label import VOCAveragePrecision, VOCMultiLabelMetric
@ -12,5 +13,5 @@ __all__ = [
'Accuracy', 'SingleLabelMetric', 'MultiLabelMetric', 'AveragePrecision',
'MultiTasksMetric', 'VOCAveragePrecision', 'VOCMultiLabelMetric',
'ConfusionMatrix', 'RetrievalRecall', 'VQAAcc', 'ReportVQA', 'COCOCaption',
'VisualGroundingMetric'
'VisualGroundingMetric', 'ScienceQAMetric'
]

View File

@ -0,0 +1,170 @@
# Copyright (c) OpenMMLab. All rights reserved.
import random
from typing import List, Optional
from mmengine.evaluator import BaseMetric
from mmpretrain.registry import METRICS
def get_pred_idx(prediction: str, choices: List[str],
options: List[str]) -> int: # noqa
"""Get the index (e.g. 2) from the prediction (e.g. 'C')
Args:
prediction (str): The prediction from the model,
from ['A', 'B', 'C', 'D', 'E']
choices (List(str)): The choices for the question,
from ['A', 'B', 'C', 'D', 'E']
options (List(str)): The options for the question,
from ['A', 'B', 'C', 'D', 'E']
Returns:
int: The index of the prediction, from [0, 1, 2, 3, 4]
"""
if prediction in options[:len(choices)]:
return options.index(prediction)
else:
return random.choice(range(len(choices)))
@METRICS.register_module()
class ScienceQAMetric(BaseMetric):
"""Evaluation Metric for ScienceQA.
Args:
options (List(str)): Options for each question. Defaults to
["A", "B", "C", "D", "E"].
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Should be modified according to the
`retrieval_type` for unambiguous results. Defaults to TR.
"""
def __init__(self,
options: List[str] = ['A', 'B', 'C', 'D', 'E'],
collect_device: str = 'cpu',
prefix: Optional[str] = None) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
self.options = options
def process(self, data_batch, data_samples) -> None:
"""Process one batch of data samples.
data_samples should contain the following keys:
1. prediction (str): The prediction from the model,
from ['A', 'B', 'C', 'D', 'E']
2. choices (List(str)): The choices for the question,
from ['A', 'B', 'C', 'D', 'E']
3. grade (int): The grade for the question, from grade1 to grade12
4. subject (str): The subject for the question, from
['natural science', 'social science', 'language science']
5. answer (str): The answer for the question, from
['A', 'B', 'C', 'D', 'E']
6. hint (str): The hint for the question
7. image (torch.Tensor): The image for the question
The processed results should be stored in ``self.results``, which will
be used to computed the metrics when all batches have been processed.
Args:
data_batch: A batch of data from the dataloader.
data_samples (Sequence[dict]): A batch of outputs from the model.
"""
for data_sample in data_samples:
result = dict()
choices = data_sample.get('choices')
result['prediction'] = get_pred_idx(
data_sample.get('prediction'), choices, self.options)
result['grade'] = data_sample.get('grade')
result['subject'] = data_sample.get('subject')
result['answer'] = self.options[data_sample.get('answer')]
image = data_sample.get('image')
hint = data_sample.get('hint')
result[
'no_context'] = True if image is None and hint is None else False # noqa
result['has_text'] = True if hint is not None else False
result['has_image'] = True if image is not None else False
# Save the result to `self.results`.
self.results.append(result)
def compute_metrics(self, results: List) -> dict:
"""Compute the metrics from processed results.
Args:
results (dict): The processed results of each batch.
Returns:
Dict: The computed metrics. The keys are the names of the metrics,
and the values are corresponding results.
"""
# NOTICE: don't access `self.results` from the method.
metrics = dict()
all_acc = []
acc_natural = []
acc_social = []
acc_language = []
acc_has_text = []
acc_has_image = []
acc_no_context = []
acc_grade_1_6 = []
acc_grade_7_12 = []
for result in results:
correct = result['prediction'] == result['answer']
all_acc.append(correct)
# different subjects
if result['subject'] == 'natural science':
acc_natural.append(correct)
elif result['subject'] == 'social science':
acc_social.append(correct)
elif result['subject'] == 'language science':
acc_language.append(correct)
# different context
if result['has_text']:
acc_has_text.append(correct)
elif result['has_image']:
acc_has_image.append(correct)
elif result['no_context']:
acc_no_context.append(correct)
# different grade
if result['grade'] in [
'grade1', 'grade2', 'grade3', 'grade4', 'grade5', 'grade6'
]:
acc_grade_1_6.append(correct)
elif result['grade'] in [
'grade7', 'grade8', 'grade9', 'grade10', 'grade11',
'grade12'
]:
acc_grade_7_12.append(correct)
metrics['all_acc'] = sum(all_acc) / len(all_acc)
if len(acc_natural) > 0:
metrics['acc_natural'] = sum(acc_natural) / len(acc_natural)
if len(acc_social) > 0:
metrics['acc_social'] = sum(acc_social) / len(acc_social)
if len(acc_language) > 0:
metrics['acc_language'] = sum(acc_language) / len(acc_language)
if len(acc_has_text) > 0:
metrics['acc_has_text'] = sum(acc_has_text) / len(acc_has_text)
if len(acc_has_image) > 0:
metrics['acc_has_image'] = sum(acc_has_image) / len(acc_has_image)
if len(acc_no_context) > 0:
metrics['acc_no_context'] = sum(acc_no_context) / len(
acc_no_context)
if len(acc_grade_1_6) > 0:
metrics['acc_grade_1_6'] = sum(acc_grade_1_6) / len(acc_grade_1_6)
if len(acc_grade_7_12) > 0:
metrics['acc_grade_7_12'] = sum(acc_grade_7_12) / len(
acc_grade_7_12)
return metrics

View File

@ -0,0 +1,27 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmengine.evaluator import Evaluator
from mmpretrain.structures import DataSample
class TestScienceQAMetric:
def test_evaluate(self):
meta_info = {
'choices': ['A', 'B', 'C', 'D'],
'prediction': 'A',
'grade': 'grade1',
'subject': 'language science',
'answer': 1,
'hint': 'hint',
'image': torch.ones((3, 224, 224))
}
data_sample = DataSample(metainfo=meta_info)
data_samples = [data_sample for _ in range(10)]
evaluator = Evaluator(dict(type='mmpretrain.ScienceQAMetric'))
evaluator.process(data_samples)
res = evaluator.evaluate(4)
assert res['acc_grade_1_6'] == 0.0
assert res['acc_language'] == 0.0
assert res['all_acc'] == 0.0