[Feature] Add RepVGG backbone and checkpoints. (#414)

* Add RepVGG code.

* Add se_module as plugin.

* Add the repvggA0 primitive config

* Change repvggA0.py to fit mmcls

* Add RepVGG configs

* Add repvgg_to_mmcls

* Add tools/deployment/convert_repvggblock_param_to_deploy.py

* Change configs/repvgg/README.md

* Streamlining the number of configuration files.

* Fix lints

* Delete plugins

* Delete code about plugin.

* Modify the code for using se module.

* Modify config to fit repvgg with se.

* Change se_cfg to allow loading of pre-training parameters.

* Reduce the complexity of the configuration file.

* Finsh unitest for repvgg.

* Fix bug about se in repvgg_to_mmcls.

* Rename convert_repvggblock_param_to_deploy.py to reparameterize_repvgg.py, and delete setting about device.

* test commit

* test commit

* test commit command

* Modify repvgg.py to make the code more readable.

* Add value=0 in F.pad()

* Add se_cfg to arch_settings.

* Fix bug.

* modeify some attr name and Update unit tests

* rename stage_0 to stem and branch_identity to branch_norm

* update unit tests

* add m.eval in unit tests

* [Enhance] Enhence SE layer to support custom squeeze channels. (#417)

* add enhenced SE

* Update

* rm basechannel

* fix docstring

* Update se_layer.py

fix docstring

* [Docs] Add algorithm readme and update meta yml (#418)

* Add README.md for models without checkpoints.

* Update model-index.yml

* Update metafile.yml of seresnet

* [Enhance] Add `hparams` argument in `AutoAugment` and `RandAugment` and some other improvement. (#398)

* Add hparams argument in `AutoAugment` and `RandAugment`.

And `pad_val` supports sequence instead of tuple only.

* Add unit tests for `AutoAugment` and `hparams` in `RandAugment`.

* Use smaller test image to speed up uni tests.

* Use hparams to simplify RandAugment config in swin-transformer.

* Rename augment config name from `pipeline` to `pipelines`.

* Add some commnet ad docstring.

* [Feature] Support classwise weight in losses (#388)

* Add classwise weight in losses:CE,BCE,softBCE

* Update unit test

* rm some extra code

* rm some extra code

* fix broadcast

* fix broadcast

* update unit tests

* use new_tensor

* fix lint

* [Enhance] Better result visualization (#419)

* Imporve result visualization to support wait time and change the backend
to matplotlib.

* Add unit test for visualization

* Add adaptive dpi function

* Rename `imshow_cls_result` to `imshow_infos`.

* Support str in `imshow_infos`

* Improve docstring.

* Bump version to v0.15.0 (#426)

* [CI] Add PyTorch 1.9 and Python 3.9 build workflow, and remove some CI. (#422)

* Add PyTorch 1.9 build workflow, and remove some CI.

* Add Python 3.9 CI

* Show Python 3.9 support.

* [Enhance] Rename the option `--options` in some tools to `--cfg-options`. (#425)

* [Docs] Fix sphinx version (#429)

* [Docs] Add `CITATION.cff` (#428)

* Add CITATION.cff

* Fix typo in setup.py

* Change author in setup.py

* modeify some attr name and Update unit tests

* rename stage_0 to stem and branch_identity to branch_norm

* update unit tests

* add m.eval in unit tests

* Update unit tests

* refactor

* refactor

* Alignment inference accuracy

* Update configs, readme and metafile

* Update readme

* return tuple and fix metafile

* fix unit test

* rm regnet and classifiers changes

* update auto_aug

* update metafile & readme

* use delattr

* rename cfgs

* Update checkpoint url

* Update readme

* Rename config files.

* Update readme and metafile

* add comment

* Update mmcls/models/backbones/repvgg.py

Co-authored-by: Ma Zerun <mzr1996@163.com>

* Update docstring

* Improve docstring.

* Update unittest_testblock

Co-authored-by: Ezra-Yu <1105212286@qq.com>
Co-authored-by: Ma Zerun <mzr1996@163.com>
pull/471/head
zhangrui_wolf 2021-09-29 11:06:23 +08:00 committed by GitHub
parent 8b7d38b243
commit 90496b4687
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
37 changed files with 1459 additions and 1 deletions

View File

@ -0,0 +1,43 @@
_base_ = ['./pipelines/auto_aug.py']
# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='AutoAugment', policies={{_base_.auto_increasing_policies}}),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
train=dict(
type=dataset_type,
data_prefix='data/imagenet/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline),
test=dict(
# replace `data/val` with `data/test` for standard test
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='accuracy')

View File

@ -0,0 +1,96 @@
# Policy for ImageNet, refers to
# https://github.com/DeepVoltaire/AutoAugment/blame/master/autoaugment.py
policy_imagenet = [
[
dict(type='Posterize', bits=4, prob=0.4),
dict(type='Rotate', angle=30., prob=0.6)
],
[
dict(type='Solarize', thr=256 / 9 * 4, prob=0.6),
dict(type='AutoContrast', prob=0.6)
],
[dict(type='Equalize', prob=0.8),
dict(type='Equalize', prob=0.6)],
[
dict(type='Posterize', bits=5, prob=0.6),
dict(type='Posterize', bits=5, prob=0.6)
],
[
dict(type='Equalize', prob=0.4),
dict(type='Solarize', thr=256 / 9 * 5, prob=0.2)
],
[
dict(type='Equalize', prob=0.4),
dict(type='Rotate', angle=30 / 9 * 8, prob=0.8)
],
[
dict(type='Solarize', thr=256 / 9 * 6, prob=0.6),
dict(type='Equalize', prob=0.6)
],
[dict(type='Posterize', bits=6, prob=0.8),
dict(type='Equalize', prob=1.)],
[
dict(type='Rotate', angle=10., prob=0.2),
dict(type='Solarize', thr=256 / 9, prob=0.6)
],
[
dict(type='Equalize', prob=0.6),
dict(type='Posterize', bits=5, prob=0.4)
],
[
dict(type='Rotate', angle=30 / 9 * 8, prob=0.8),
dict(type='ColorTransform', magnitude=0., prob=0.4)
],
[
dict(type='Rotate', angle=30., prob=0.4),
dict(type='Equalize', prob=0.6)
],
[dict(type='Equalize', prob=0.0),
dict(type='Equalize', prob=0.8)],
[dict(type='Invert', prob=0.6),
dict(type='Equalize', prob=1.)],
[
dict(type='ColorTransform', magnitude=0.4, prob=0.6),
dict(type='Contrast', magnitude=0.8, prob=1.)
],
[
dict(type='Rotate', angle=30 / 9 * 8, prob=0.8),
dict(type='ColorTransform', magnitude=0.2, prob=1.)
],
[
dict(type='ColorTransform', magnitude=0.8, prob=0.8),
dict(type='Solarize', thr=256 / 9 * 2, prob=0.8)
],
[
dict(type='Sharpness', magnitude=0.7, prob=0.4),
dict(type='Invert', prob=0.6)
],
[
dict(
type='Shear',
magnitude=0.3 / 9 * 5,
prob=0.6,
direction='horizontal'),
dict(type='Equalize', prob=1.)
],
[
dict(type='ColorTransform', magnitude=0., prob=0.4),
dict(type='Equalize', prob=0.6)
],
[
dict(type='Equalize', prob=0.4),
dict(type='Solarize', thr=256 / 9 * 5, prob=0.2)
],
[
dict(type='Solarize', thr=256 / 9 * 4, prob=0.6),
dict(type='AutoContrast', prob=0.6)
],
[dict(type='Invert', prob=0.6),
dict(type='Equalize', prob=1.)],
[
dict(type='ColorTransform', magnitude=0.4, prob=0.6),
dict(type='Contrast', magnitude=0.8, prob=1.)
],
[dict(type='Equalize', prob=0.8),
dict(type='Equalize', prob=0.6)],
]

View File

@ -0,0 +1,15 @@
model = dict(
type='ImageClassifier',
backbone=dict(
type='RepVGG',
arch='A0',
out_indices=(3, ),
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))

View File

@ -0,0 +1,23 @@
model = dict(
type='ImageClassifier',
backbone=dict(
type='RepVGG',
arch='B3',
out_indices=(3, ),
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2560,
loss=dict(
type='LabelSmoothLoss',
loss_weight=1.0,
label_smooth_val=0.1,
mode='classy_vision',
num_classes=1000),
topk=(1, 5),
),
train_cfg=dict(
augments=dict(type='BatchMixup', alpha=0.2, num_classes=1000,
prob=1.)))

View File

@ -0,0 +1,11 @@
# optimizer
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='CosineAnnealing',
min_lr=0,
warmup='linear',
warmup_iters=25025,
warmup_ratio=0.25)
runner = dict(type='EpochBasedRunner', max_epochs=200)

View File

@ -0,0 +1,48 @@
# Repvgg: Making vgg-style convnets great again
## Introduction
<!-- [ALGORITHM] -->
```latex
@inproceedings{ding2021repvgg,
title={Repvgg: Making vgg-style convnets great again},
author={Ding, Xiaohan and Zhang, Xiangyu and Ma, Ningning and Han, Jungong and Ding, Guiguang and Sun, Jian},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={13733--13742},
year={2021}
}
```
## Pretrain model
| Model | Epochs | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
| :---------: | :----: | :-------------------------------: | :-----------------------------: | :-------: | :-------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| RepVGG-A0 | 120 | 9.11train) \| 8.31 (deploy) | 1.52 (train) \| 1.36 (deploy) | 72.41 | 90.50 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A0_4xb64-coslr-120e_in1k.py) \| [config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A0_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A0_3rdparty_4xb64-coslr-120e_in1k_20210909-883ab98c.pth) |
| RepVGG-A1 | 120 | 14.09 (train) \| 12.79 (deploy) | 2.64 (train) \| 2.37 (deploy) | 74.47 | 91.85 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-A1_4xb64-coslr-120e_in1k.py) \| [config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A1_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A1_3rdparty_4xb64-coslr-120e_in1k_20210909-24003a24.pth) |
| RepVGG-A2 | 120 | 28.21 (train) \| 25.5 (deploy) | 5.7 (train) \| 5.12 (deploy) | 76.48 | 93.01 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/masterconfigs/repvgg/repvgg-A2_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-A2_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A2_3rdparty_4xb64-coslr-120e_in1k_20210909-97d7695a.pth) |
| RepVGG-B0 | 120 | 15.82 (train) \| 14.34 (deploy) | 3.42 (train) \| 3.06 (deploy) | 75.14 | 92.42 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B0_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B0_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B0_3rdparty_4xb64-coslr-120e_in1k_20210909-446375f4.pth) |
| RepVGG-B1 | 120 | 57.42 (train) \| 51.83 (deploy) | 13.16 (train) \| 11.82 (deploy) | 78.37 | 94.11 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1_3rdparty_4xb64-coslr-120e_in1k_20210909-750cdf67.pth) |
| RepVGG-B1g2 | 120 | 45.78 (train) \| 41.36 (deploy) | 9.82 (train) \| 8.82 (deploy) | 77.79 | 93.88 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1g2_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1g2_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g2_3rdparty_4xb64-coslr-120e_in1k_20210909-344f6422.pth) |
| RepVGG-B1g4 | 120 | 39.97 (train) \| 36.13 (deploy) | 8.15 (train) \| 7.32 (deploy) | 77.58 | 93.84 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B1g4_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B1g4_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g4_3rdparty_4xb64-coslr-120e_in1k_20210909-d4c1a642.pth) |
| RepVGG-B2 | 120 | 89.02 (train) \| 80.32 (deploy) | 20.46 (train) \| 18.39 (deploy) | 78.78 | 94.42 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B2_4xb64-coslr-120e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B2_deploy_4xb64-coslr-120e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2_3rdparty_4xb64-coslr-120e_in1k_20210909-bd6b937c.pth) |
| RepVGG-B2g4 | 200 | 61.76 (train) \| 55.78 (deploy) | 12.63 (train) \| 11.34 (deploy) | 79.38 | 94.68 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B2g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B2g4_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-7b7955f0.pth) |
| RepVGG-B3 | 200 | 123.09 (train) \| 110.96 (deploy) | 29.17 (train) \| 26.22 (deploy) | 80.52 | 95.26 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B3_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-dda968bf.pth) |
| RepVGG-B3g4 | 200 | 83.83 (train) \| 75.63 (deploy) | 17.9 (train) \| 16.08 (deploy) | 80.22 | 95.10 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-B3g4_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-4e54846a.pth) |
| RepVGG-D2se | 200 | 133.33 (train) \| 120.39 (deploy) | 36.56 (train) \| 32.85 (deploy) | 81.81 | 95.94 | [config (train)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/repvgg-D2se_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) \|[config (deploy)](https://github.com/open-mmlab/mmclassification/blob/master/configs/repvgg/deploy/repvgg-D2se_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-D2se_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-cf3139b7.pth) |
## Reparameterize RepVGG
The checkpoints provided are all in `train` form. Use the reparameterize tool to switch them to more efficient `deploy` form, which not only has fewer parameters but also less calculations.
```bash
python ./tools/convert_models/reparameterize_repvgg.py ${CFG_PATH} ${SRC_CKPT_PATH} ${TARGET_CKPT_PATH}
```
`${CFG_PATH}` is the config file, `${SRC_CKPT_PATH}` is the source chenpoint file, `${TARGET_CKPT_PATH}` is the target deploy weight file path.
To use reparameterized repvgg weight, the config file must switch to [the deploy config files](./configs/repvgg/deploy) as below:
```bash
python ./tools/test.py ${RapVGG_Deploy_CFG} ${CHECK_POINT}
```

View File

@ -0,0 +1,3 @@
_base_ = '../repvgg-A0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))

View File

@ -0,0 +1,3 @@
_base_ = '../repvgg-A1_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))

View File

@ -0,0 +1,3 @@
_base_ = '../repvgg-A2_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))

View File

@ -0,0 +1,3 @@
_base_ = '../repvgg-B0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))

View File

@ -0,0 +1,3 @@
_base_ = '../repvgg-B1_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))

View File

@ -0,0 +1,3 @@
_base_ = '../repvgg-B1g2_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))

View File

@ -0,0 +1,3 @@
_base_ = '../repvgg-B1g4_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))

View File

@ -0,0 +1,3 @@
_base_ = '../repvgg-B2_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(deploy=True))

View File

@ -0,0 +1,3 @@
_base_ = '../repvgg-B2g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'
model = dict(backbone=dict(deploy=True))

View File

@ -0,0 +1,3 @@
_base_ = '../repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'
model = dict(backbone=dict(deploy=True))

View File

@ -0,0 +1,3 @@
_base_ = '../repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'
model = dict(backbone=dict(deploy=True))

View File

@ -0,0 +1,3 @@
_base_ = '../repvgg-D2se_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'
model = dict(backbone=dict(deploy=True))

View File

@ -0,0 +1,205 @@
Collections:
- Name: RepVGG
Metadata:
Training Data: ImageNet-1k
Architecture:
- re-parameterization Convolution
- VGG-style Neural Network
Paper:
URL: https://arxiv.org/abs/2101.03697
Title: 'RepVGG: Making VGG-style ConvNets Great Again'
README: configs/repvgg/README.md
Models:
- Name: repvgg-A0_4xb64-coslr-120e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-A0_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 1520000000
Parameters: 9110000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 72.41
Top 5 Accuracy: 90.50
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A0_3rdparty_4xb64-coslr-120e_in1k_20210909-883ab98c.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L196
- Name: repvgg-A1_4xb64-coslr-120e_in1k
In Collection: Repvgg
Config: configs/repvgg/repvgg-A1_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 2640000000
Parameters: 14090000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 74.47
Top 5 Accuracy: 91.85
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A1_3rdparty_4xb64-coslr-120e_in1k_20210909-24003a24.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L200
- Name: repvgg-A2_4xb64-coslr-120e_in1k
In Collection: Repvgg
Config: configs/repvgg/repvgg-A2_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 28210000000
Parameters: 5700000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 76.48
Top 5 Accuracy: 93.01
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A2_3rdparty_4xb64-coslr-120e_in1k_20210909-97d7695a.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L204
- Name: repvgg-B0_4xb64-coslr-120e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B0_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 15820000000
Parameters: 3420000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 75.14
Top 5 Accuracy: 92.42
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B0_3rdparty_4xb64-coslr-120e_in1k_20210909-446375f4.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L208
- Name: repvgg-B1_4xb64-coslr-120e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B1_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 57420000000
Parameters: 13160000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 78.37
Top 5 Accuracy: 94.11
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1_3rdparty_4xb64-coslr-120e_in1k_20210909-750cdf67.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L212
- Name: repvgg-B1g2_4xb64-coslr-120e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B1g2_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 45780000000
Parameters: 9820000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 77.79
Top 5 Accuracy: 93.88
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g2_3rdparty_4xb64-coslr-120e_in1k_20210909-344f6422.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L216
- Name: repvgg-B1g4_4xb64-coslr-120e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B1g4_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 39970000000
Parameters: 8150000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 77.58
Top 5 Accuracy: 93.84
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g4_3rdparty_4xb64-coslr-120e_in1k_20210909-d4c1a642.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L220
- Name: repvgg-B2_4xb64-coslr-120e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B2_4xb64-coslr-120e_in1k.py
Metadata:
FLOPs: 89020000000
Parameters: 20420000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 78.78
Top 5 Accuracy: 94.42
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2_3rdparty_4xb64-coslr-120e_in1k_20210909-bd6b937c.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L225
- Name: repvgg-B2g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B2g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
Metadata:
FLOPs: 61760000000
Parameters: 12630000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 79.38
Top 5 Accuracy: 94.68
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-7b7955f0.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L229
- Name: repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
Metadata:
FLOPs: 123090000000
Parameters: 29170000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 80.52
Top 5 Accuracy: 95.26
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-dda968bf.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L238
- Name: repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
Metadata:
FLOPs: 83830000000
Parameters: 17900000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 80.22
Top 5 Accuracy: 95.10
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-4e54846a.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L238
- Name: repvgg-D2se_4xb64-autoaug-lbs-mixup-coslr-200e_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-D2se_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
Metadata:
FLOPs: 133330000000
Parameters: 36560000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 81.81
Top 5 Accuracy: 95.94
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-D2se_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-cf3139b7.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L250

View File

@ -0,0 +1,8 @@
_base_ = [
'../_base_/models/repvgg-A0_in1k.py',
'../_base_/datasets/imagenet_bs64_pil_resize.py',
'../_base_/schedules/imagenet_bs256_coslr.py',
'../_base_/default_runtime.py'
]
runner = dict(max_epochs=120)

View File

@ -0,0 +1,3 @@
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(arch='A1'))

View File

@ -0,0 +1,3 @@
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(arch='A2'), head=dict(in_channels=1408))

View File

@ -0,0 +1,3 @@
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(arch='B0'), head=dict(in_channels=1280))

View File

@ -0,0 +1,3 @@
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(arch='B1'), head=dict(in_channels=2048))

View File

@ -0,0 +1,3 @@
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(arch='B1g2'), head=dict(in_channels=2048))

View File

@ -0,0 +1,3 @@
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(arch='B1g4'), head=dict(in_channels=2048))

View File

@ -0,0 +1,3 @@
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
model = dict(backbone=dict(arch='B2'), head=dict(in_channels=2560))

View File

@ -0,0 +1,3 @@
_base_ = './repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'
model = dict(backbone=dict(arch='B2g4'))

View File

@ -0,0 +1,6 @@
_base_ = [
'../_base_/models/repvgg-B3_lbs-mixup_in1k.py',
'../_base_/datasets/imagenet_bs64_pil_resize.py',
'../_base_/schedules/imagenet_bs256_200e_coslr_warmup.py',
'../_base_/default_runtime.py'
]

View File

@ -0,0 +1,3 @@
_base_ = './repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'
model = dict(backbone=dict(arch='B3g4'))

View File

@ -0,0 +1,3 @@
_base_ = './repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'
model = dict(backbone=dict(arch='D2se'))

View File

@ -4,6 +4,7 @@ from .lenet import LeNet5
from .mobilenet_v2 import MobileNetV2
from .mobilenet_v3 import MobileNetV3
from .regnet import RegNet
from .repvgg import RepVGG
from .resnest import ResNeSt
from .resnet import ResNet, ResNetV1d
from .resnet_cifar import ResNet_CIFAR
@ -22,5 +23,5 @@ __all__ = [
'LeNet5', 'AlexNet', 'VGG', 'RegNet', 'ResNet', 'ResNeXt', 'ResNetV1d',
'ResNeSt', 'ResNet_CIFAR', 'SEResNet', 'SEResNeXt', 'ShuffleNetV1',
'ShuffleNetV2', 'MobileNetV2', 'MobileNetV3', 'VisionTransformer',
'SwinTransformer', 'TNT', 'TIMMBackbone'
'SwinTransformer', 'TNT', 'RepVGG', 'TIMMBackbone'
]

View File

@ -0,0 +1,537 @@
import torch
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from mmcv.cnn import build_activation_layer, build_conv_layer, build_norm_layer
from mmcv.runner import BaseModule, Sequential
from mmcv.utils.parrots_wrapper import _BatchNorm
from ..builder import BACKBONES
from ..utils.se_layer import SELayer
from .base_backbone import BaseBackbone
class RepVGGBlock(BaseModule):
"""RepVGG block for RepVGG backbone.
Args:
in_channels (int): The input channels of the block.
out_channels (int): The output channels of the block.
stride (int): Stride of the 3x3 and 1x1 convolution layer. Default: 1.
padding (int): Padding of the 3x3 convolution layer.
dilation (int): Dilation of the 3x3 convolution layer.
groups (int): Groups of the 3x3 and 1x1 convolution layer. Default: 1.
padding_mode (str): Padding mode of the 3x3 convolution layer.
Default: 'zeros'.
se_cfg (None or dict): The configuration of the se module.
Default: None.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
conv_cfg (dict, optional): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN', requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU').
deploy (bool): Whether to switch the model structure to
deployment mode. Default: False.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
def __init__(self,
in_channels,
out_channels,
stride=1,
padding=1,
dilation=1,
groups=1,
padding_mode='zeros',
se_cfg=None,
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
deploy=False,
init_cfg=None):
super(RepVGGBlock, self).__init__(init_cfg)
assert se_cfg is None or isinstance(se_cfg, dict)
self.in_channels = in_channels
self.out_channels = out_channels
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.se_cfg = se_cfg
self.with_cp = with_cp
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.deploy = deploy
if deploy:
self.branch_reparam = build_conv_layer(
conv_cfg,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=True,
padding_mode=padding_mode)
else:
# judge if input shape and output shape are the same.
# If true, add a normalized identity shortcut.
if out_channels == in_channels and stride == 1 and \
padding == dilation:
self.branch_norm = build_norm_layer(norm_cfg, in_channels)[1]
else:
self.branch_norm = None
self.branch_3x3 = self.create_conv_bn(
kernel_size=3,
dilation=dilation,
padding=padding,
)
self.branch_1x1 = self.create_conv_bn(kernel_size=1)
if se_cfg is not None:
self.se_layer = SELayer(channels=out_channels, **se_cfg)
else:
self.se_layer = None
self.act = build_activation_layer(act_cfg)
def create_conv_bn(self, kernel_size, dilation=1, padding=0):
conv_bn = Sequential()
conv_bn.add_module(
'conv',
build_conv_layer(
self.conv_cfg,
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=kernel_size,
stride=self.stride,
dilation=dilation,
padding=padding,
groups=self.groups,
bias=False))
conv_bn.add_module(
'norm',
build_norm_layer(self.norm_cfg, num_features=self.out_channels)[1])
return conv_bn
def forward(self, x):
def _inner_forward(inputs):
if self.deploy:
return self.branch_reparam(inputs)
if self.branch_norm is None:
branch_norm_out = 0
else:
branch_norm_out = self.branch_norm(inputs)
inner_out = self.branch_3x3(inputs) + self.branch_1x1(
inputs) + branch_norm_out
if self.se_cfg is not None:
inner_out = self.se_layer(inner_out)
return inner_out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.act(out)
return out
def switch_to_deploy(self):
"""Switch the model structure from training mode to deployment mode."""
if self.deploy:
return
assert self.norm_cfg['type'] == 'BN', \
"Switch is not allowed when norm_cfg['type'] != 'BN'."
reparam_weight, reparam_bias = self.reparameterize()
self.branch_reparam = build_conv_layer(
self.conv_cfg,
self.in_channels,
self.out_channels,
kernel_size=3,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
bias=True)
self.branch_reparam.weight.data = reparam_weight
self.branch_reparam.bias.data = reparam_bias
for param in self.parameters():
param.detach_()
delattr(self, 'branch_3x3')
delattr(self, 'branch_1x1')
delattr(self, 'branch_norm')
self.deploy = True
def reparameterize(self):
"""Fuse all the parameters of all branchs.
Returns:
tuple[torch.Tensor, torch.Tensor]: Parameters after fusion of all
branches. the first element is the weights and the second is
the bias.
"""
weight_3x3, bias_3x3 = self._fuse_conv_bn(self.branch_3x3)
weight_1x1, bias_1x1 = self._fuse_conv_bn(self.branch_1x1)
# pad a conv1x1 weight to a conv3x3 weight
weight_1x1 = F.pad(weight_1x1, [1, 1, 1, 1], value=0)
weight_norm, bias_norm = 0, 0
if self.branch_norm:
tmp_conv_bn = self._norm_to_conv3x3(self.branch_norm)
weight_norm, bias_norm = self._fuse_conv_bn(tmp_conv_bn)
return (weight_3x3 + weight_1x1 + weight_norm,
bias_3x3 + bias_1x1 + bias_norm)
def _fuse_conv_bn(self, branch):
"""Fuse the parameters in a branch with a conv and bn.
Args:
branch (mmcv.runner.Sequential): A branch with conv and bn.
Returns:
tuple[torch.Tensor, torch.Tensor]: The parameters obtained after
fusing the parameters of conv and bn in one branch.
The first element is the weight and the second is the bias.
"""
if branch is None:
return 0, 0
conv_weight = branch.conv.weight
running_mean = branch.norm.running_mean
running_var = branch.norm.running_var
gamma = branch.norm.weight
beta = branch.norm.bias
eps = branch.norm.eps
std = (running_var + eps).sqrt()
fused_weight = (gamma / std).reshape(-1, 1, 1, 1) * conv_weight
fused_bias = -running_mean * gamma / std + beta
return fused_weight, fused_bias
def _norm_to_conv3x3(self, branch_nrom):
"""Convert a norm layer to a conv3x3-bn sequence.
Args:
branch (nn.BatchNorm2d): A branch only with bn in the block.
Returns:
tmp_conv3x3 (mmcv.runner.Sequential): a sequential with conv3x3 and
bn.
"""
input_dim = self.in_channels // self.groups
conv_weight = torch.zeros((self.in_channels, input_dim, 3, 3),
dtype=branch_nrom.weight.dtype)
for i in range(self.in_channels):
conv_weight[i, i % input_dim, 1, 1] = 1
conv_weight = conv_weight.to(branch_nrom.weight.device)
tmp_conv3x3 = self.create_conv_bn(kernel_size=3)
tmp_conv3x3.conv.weight.data = conv_weight
tmp_conv3x3.norm = branch_nrom
return tmp_conv3x3
@BACKBONES.register_module()
class RepVGG(BaseBackbone):
"""RepVGG backbone.
A PyTorch impl of : `RepVGG: Making VGG-style ConvNets Great Again
<https://arxiv.org/abs/2101.03697>`_
Args:
arch (str | dict): The parameter of RepVGG.
If it's a dict, it should contain the following keys:
- num_blocks (Sequence[int]): Number of blocks in each stage.
- width_factor (Sequence[float]): Width deflator in each stage.
- group_layer_map (dict | None): RepVGG Block that declares
the need to apply group convolution.
- se_cfg (dict | None): Se Layer config
in_channels (int): Number of input image channels. Default: 3.
base_channels (int): Base channels of RepVGG backbone, work
with width_factor together. Default: 64.
out_indices (Sequence[int]): Output from which stages. Default: (3, ).
strides (Sequence[int]): Strides of the first block of each stage.
Default: (2, 2, 2, 2).
dilations (Sequence[int]): Dilation of each stage.
Default: (1, 1, 1, 1).
frozen_stages (int): Stages to be frozen (all param fixed). -1 means
not freezing any parameters. Default: -1.
conv_cfg (dict | None): The config dict for conv layers. Default: None.
norm_cfg (dict): The config dict for norm layers.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU').
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
deploy (bool): Whether to switch the model structure to deployment
mode. Default: False.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
groupwise_layers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26]
g2_layer_map = {layer: 2 for layer in groupwise_layers}
g4_layer_map = {layer: 4 for layer in groupwise_layers}
arch_settings = {
'A0':
dict(
num_blocks=[2, 4, 14, 1],
width_factor=[0.75, 0.75, 0.75, 2.5],
group_layer_map=None,
se_cfg=None),
'A1':
dict(
num_blocks=[2, 4, 14, 1],
width_factor=[1, 1, 1, 2.5],
group_layer_map=None,
se_cfg=None),
'A2':
dict(
num_blocks=[2, 4, 14, 1],
width_factor=[1.5, 1.5, 1.5, 2.75],
group_layer_map=None,
se_cfg=None),
'B0':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[1, 1, 1, 2.5],
group_layer_map=None,
se_cfg=None),
'B1':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[2, 2, 2, 4],
group_layer_map=None,
se_cfg=None),
'B1g2':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[2, 2, 2, 4],
group_layer_map=g2_layer_map,
se_cfg=None),
'B1g4':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[2, 2, 2, 4],
group_layer_map=g4_layer_map,
se_cfg=None),
'B2':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[2.5, 2.5, 2.5, 5],
group_layer_map=None,
se_cfg=None),
'B2g2':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[2.5, 2.5, 2.5, 5],
group_layer_map=g2_layer_map,
se_cfg=None),
'B2g4':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[2.5, 2.5, 2.5, 5],
group_layer_map=g4_layer_map,
se_cfg=None),
'B3':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[3, 3, 3, 5],
group_layer_map=None,
se_cfg=None),
'B3g2':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[3, 3, 3, 5],
group_layer_map=g2_layer_map,
se_cfg=None),
'B3g4':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[3, 3, 3, 5],
group_layer_map=g4_layer_map,
se_cfg=None),
'D2se':
dict(
num_blocks=[8, 14, 24, 1],
width_factor=[2.5, 2.5, 2.5, 5],
group_layer_map=None,
se_cfg=dict(ratio=16, divisor=1))
}
def __init__(self,
arch,
in_channels=3,
base_channels=64,
out_indices=(3, ),
strides=(2, 2, 2, 2),
dilations=(1, 1, 1, 1),
frozen_stages=-1,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
with_cp=False,
deploy=False,
norm_eval=False,
init_cfg=[
dict(type='Kaiming', layer=['Conv2d']),
dict(
type='Constant',
val=1,
layer=['_BatchNorm', 'GroupNorm'])
]):
super(RepVGG, self).__init__(init_cfg)
if isinstance(arch, str):
assert arch in self.arch_settings, \
f'"arch": "{arch}" is not one of the arch_settings'
arch = self.arch_settings[arch]
elif not isinstance(arch, dict):
raise TypeError('Expect "arch" to be either a string '
f'or a dict, got {type(arch)}')
assert len(arch['num_blocks']) == len(
arch['width_factor']) == len(strides) == len(dilations)
assert max(out_indices) < len(arch['num_blocks'])
if arch['group_layer_map'] is not None:
assert max(arch['group_layer_map'].keys()) <= sum(
arch['num_blocks'])
if arch['se_cfg'] is not None:
assert isinstance(arch['se_cfg'], dict)
self.arch = arch
self.in_channels = in_channels
self.base_channels = base_channels
self.out_indices = out_indices
self.strides = strides
self.dilations = dilations
self.deploy = deploy
self.frozen_stages = frozen_stages
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.with_cp = with_cp
self.norm_eval = norm_eval
channels = min(64, int(base_channels * self.arch['width_factor'][0]))
self.stem = RepVGGBlock(
self.in_channels,
channels,
stride=2,
se_cfg=arch['se_cfg'],
with_cp=with_cp,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
deploy=deploy)
next_create_block_idx = 1
self.stages = []
for i in range(len(arch['num_blocks'])):
num_blocks = self.arch['num_blocks'][i]
stride = self.strides[i]
dilation = self.dilations[i]
out_channels = int(base_channels * 2**i *
self.arch['width_factor'][i])
stage, next_create_block_idx = self._make_stage(
channels, out_channels, num_blocks, stride, dilation,
next_create_block_idx, init_cfg)
stage_name = f'stage_{i + 1}'
self.add_module(stage_name, stage)
self.stages.append(stage_name)
channels = out_channels
def _make_stage(self, in_channels, out_channels, num_blocks, stride,
dilation, next_create_block_idx, init_cfg):
strides = [stride] + [1] * (num_blocks - 1)
dilations = [dilation] * num_blocks
blocks = []
for i in range(num_blocks):
groups = self.arch['group_layer_map'].get(
next_create_block_idx,
1) if self.arch['group_layer_map'] is not None else 1
blocks.append(
RepVGGBlock(
in_channels,
out_channels,
stride=strides[i],
padding=dilations[i],
dilation=dilations[i],
groups=groups,
se_cfg=self.arch['se_cfg'],
with_cp=self.with_cp,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
deploy=self.deploy,
init_cfg=init_cfg))
in_channels = out_channels
next_create_block_idx += 1
return Sequential(*blocks), next_create_block_idx
def forward(self, x):
x = self.stem(x)
outs = []
for i, stage_name in enumerate(self.stages):
stage = getattr(self, stage_name)
x = stage(x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.stem.eval()
for param in self.stem.parameters():
param.requires_grad = False
for i in range(self.frozen_stages):
stage = getattr(self, f'stage_{i+1}')
stage.eval()
for param in stage.parameters():
param.requires_grad = False
def train(self, mode=True):
super(RepVGG, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
def switch_to_deploy(self):
for m in self.modules():
if isinstance(m, RepVGGBlock):
m.switch_to_deploy()
self.deploy = True

View File

@ -8,4 +8,5 @@ Import:
- configs/shufflenet_v2/metafile.yml
- configs/swin_transformer/metafile.yml
- configs/vgg/metafile.yml
- configs/repvgg/metafile.yml
- configs/tnt/metafile.yml

View File

@ -0,0 +1,293 @@
import os
import tempfile
import pytest
import torch
from mmcv.runner import load_checkpoint, save_checkpoint
from torch import nn
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import RepVGG
from mmcls.models.backbones.repvgg import RepVGGBlock
from mmcls.models.utils import SELayer
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def is_repvgg_block(modules):
if isinstance(modules, RepVGGBlock):
return True
return False
def test_repvgg_repvggblock():
# Test RepVGGBlock with in_channels != out_channels, stride = 1
block = RepVGGBlock(5, 10, stride=1)
block.eval()
x = torch.randn(1, 5, 16, 16)
x_out_not_deploy = block(x)
assert block.branch_norm is None
assert not hasattr(block, 'branch_reparam')
assert hasattr(block, 'branch_1x1')
assert hasattr(block, 'branch_3x3')
assert hasattr(block, 'branch_norm')
assert block.se_cfg is None
assert x_out_not_deploy.shape == torch.Size((1, 10, 16, 16))
block.switch_to_deploy()
assert block.deploy is True
x_out_deploy = block(x)
assert x_out_deploy.shape == torch.Size((1, 10, 16, 16))
assert torch.allclose(x_out_not_deploy, x_out_deploy, atol=1e-5, rtol=1e-4)
# Test RepVGGBlock with in_channels == out_channels, stride = 1
block = RepVGGBlock(12, 12, stride=1)
block.eval()
x = torch.randn(1, 12, 8, 8)
x_out_not_deploy = block(x)
assert isinstance(block.branch_norm, nn.BatchNorm2d)
assert not hasattr(block, 'branch_reparam')
assert x_out_not_deploy.shape == torch.Size((1, 12, 8, 8))
block.switch_to_deploy()
assert block.deploy is True
x_out_deploy = block(x)
assert x_out_deploy.shape == torch.Size((1, 12, 8, 8))
assert torch.allclose(x_out_not_deploy, x_out_deploy, atol=1e-5, rtol=1e-4)
# Test RepVGGBlock with in_channels == out_channels, stride = 2
block = RepVGGBlock(16, 16, stride=2)
block.eval()
x = torch.randn(1, 16, 8, 8)
x_out_not_deploy = block(x)
assert block.branch_norm is None
assert x_out_not_deploy.shape == torch.Size((1, 16, 4, 4))
block.switch_to_deploy()
assert block.deploy is True
x_out_deploy = block(x)
assert x_out_deploy.shape == torch.Size((1, 16, 4, 4))
assert torch.allclose(x_out_not_deploy, x_out_deploy, atol=1e-5, rtol=1e-4)
# Test RepVGGBlock with padding == dilation == 2
block = RepVGGBlock(14, 14, stride=1, padding=2, dilation=2)
block.eval()
x = torch.randn(1, 14, 16, 16)
x_out_not_deploy = block(x)
assert isinstance(block.branch_norm, nn.BatchNorm2d)
assert x_out_not_deploy.shape == torch.Size((1, 14, 16, 16))
block.switch_to_deploy()
assert block.deploy is True
x_out_deploy = block(x)
assert x_out_deploy.shape == torch.Size((1, 14, 16, 16))
assert torch.allclose(x_out_not_deploy, x_out_deploy, atol=1e-5, rtol=1e-4)
# Test RepVGGBlock with groups = 2
block = RepVGGBlock(4, 4, stride=1, groups=2)
block.eval()
x = torch.randn(1, 4, 5, 6)
x_out_not_deploy = block(x)
assert x_out_not_deploy.shape == torch.Size((1, 4, 5, 6))
block.switch_to_deploy()
assert block.deploy is True
x_out_deploy = block(x)
assert x_out_deploy.shape == torch.Size((1, 4, 5, 6))
assert torch.allclose(x_out_not_deploy, x_out_deploy, atol=1e-5, rtol=1e-4)
# Test RepVGGBlock with se
se_cfg = dict(ratio=4, divisor=1)
block = RepVGGBlock(18, 18, stride=1, se_cfg=se_cfg)
block.train()
x = torch.randn(1, 18, 5, 5)
x_out_not_deploy = block(x)
assert isinstance(block.se_layer, SELayer)
assert x_out_not_deploy.shape == torch.Size((1, 18, 5, 5))
# Test RepVGGBlock with checkpoint forward
block = RepVGGBlock(24, 24, stride=1, with_cp=True)
assert block.with_cp
x = torch.randn(1, 24, 7, 7)
x_out = block(x)
assert x_out.shape == torch.Size((1, 24, 7, 7))
# Test RepVGGBlock with deploy == True
block = RepVGGBlock(8, 8, stride=1, deploy=True)
assert isinstance(block.branch_reparam, nn.Conv2d)
assert not hasattr(block, 'branch_3x3')
assert not hasattr(block, 'branch_1x1')
assert not hasattr(block, 'branch_norm')
x = torch.randn(1, 8, 16, 16)
x_out = block(x)
assert x_out.shape == torch.Size((1, 8, 16, 16))
def test_repvgg_backbone():
with pytest.raises(TypeError):
# arch must be str or dict
RepVGG(arch=[4, 6, 16, 1])
with pytest.raises(AssertionError):
# arch must in arch_settings
RepVGG(arch='A3')
with pytest.raises(KeyError):
# arch must have num_blocks and width_factor
arch = dict(num_blocks=[2, 4, 14, 1])
RepVGG(arch=arch)
# len(arch['num_blocks']) == len(arch['width_factor'])
# == len(strides) == len(dilations)
with pytest.raises(AssertionError):
arch = dict(num_blocks=[2, 4, 14, 1], width_factor=[0.75, 0.75, 0.75])
RepVGG(arch=arch)
# len(strides) must equal to 4
with pytest.raises(AssertionError):
RepVGG('A0', strides=(1, 1, 1))
# len(dilations) must equal to 4
with pytest.raises(AssertionError):
RepVGG('A0', strides=(1, 1, 1, 1), dilations=(1, 1, 2))
# max(out_indices) < len(arch['num_blocks'])
with pytest.raises(AssertionError):
RepVGG('A0', out_indices=(5, ))
# max(arch['group_idx'].keys()) <= sum(arch['num_blocks'])
with pytest.raises(AssertionError):
arch = dict(
num_blocks=[2, 4, 14, 1],
width_factor=[0.75, 0.75, 0.75],
group_idx={22: 2})
RepVGG(arch=arch)
# Test RepVGG norm state
model = RepVGG('A0')
model.train()
assert check_norm_state(model.modules(), True)
# Test RepVGG with first stage frozen
frozen_stages = 1
model = RepVGG('A0', frozen_stages=frozen_stages)
model.train()
for param in model.stem.parameters():
assert param.requires_grad is False
for i in range(0, frozen_stages):
stage_name = model.stages[i]
stage = model.__getattr__(stage_name)
for mod in stage:
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in stage.parameters():
assert param.requires_grad is False
# Test RepVGG with norm_eval
model = RepVGG('A0', norm_eval=True)
model.train()
assert check_norm_state(model.modules(), False)
# Test RepVGG forward with layer 3 forward
model = RepVGG('A0', out_indices=(3, ))
model.init_weights()
model.train()
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert isinstance(feat, tuple)
assert len(feat) == 1
assert isinstance(feat[0], torch.Tensor)
assert feat[0].shape == torch.Size((1, 1280, 7, 7))
# Test RepVGG forward
model_test_settings = [
dict(model_name='A0', out_sizes=(48, 96, 192, 1280)),
dict(model_name='A1', out_sizes=(64, 128, 256, 1280)),
dict(model_name='A2', out_sizes=(96, 192, 384, 1408)),
dict(model_name='B0', out_sizes=(64, 128, 256, 1280)),
dict(model_name='B1', out_sizes=(128, 256, 512, 2048)),
dict(model_name='B1g2', out_sizes=(128, 256, 512, 2048)),
dict(model_name='B1g4', out_sizes=(128, 256, 512, 2048)),
dict(model_name='B2', out_sizes=(160, 320, 640, 2560)),
dict(model_name='B2g2', out_sizes=(160, 320, 640, 2560)),
dict(model_name='B2g4', out_sizes=(160, 320, 640, 2560)),
dict(model_name='B3', out_sizes=(192, 384, 768, 2560)),
dict(model_name='B3g2', out_sizes=(192, 384, 768, 2560)),
dict(model_name='B3g4', out_sizes=(192, 384, 768, 2560)),
dict(model_name='D2se', out_sizes=(160, 320, 640, 2560))
]
choose_models = ['A0', 'B1', 'B1g2', 'D2se']
# Test RepVGG model forward
for model_test_setting in model_test_settings:
if model_test_setting['model_name'] not in choose_models:
continue
model = RepVGG(
model_test_setting['model_name'], out_indices=(0, 1, 2, 3))
model.init_weights()
# Test Norm
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[0].shape == torch.Size(
(1, model_test_setting['out_sizes'][0], 56, 56))
assert feat[1].shape == torch.Size(
(1, model_test_setting['out_sizes'][1], 28, 28))
assert feat[2].shape == torch.Size(
(1, model_test_setting['out_sizes'][2], 14, 14))
assert feat[3].shape == torch.Size(
(1, model_test_setting['out_sizes'][3], 7, 7))
# Test eval of "train" mode and "deploy" mode
gap = nn.AdaptiveAvgPool2d(output_size=(1))
fc = nn.Linear(model_test_setting['out_sizes'][3], 10)
model.eval()
feat = model(imgs)
pred = fc(gap(feat[3]).flatten(1))
model.switch_to_deploy()
for m in model.modules():
if isinstance(m, RepVGGBlock):
assert m.deploy is True
feat_deploy = model(imgs)
pred_deploy = fc(gap(feat_deploy[3]).flatten(1))
for i in range(4):
torch.allclose(feat[i], feat_deploy[i])
torch.allclose(pred, pred_deploy)
def test_repvgg_load():
# Test ouput before and load from deploy checkpoint
model = RepVGG('A1', out_indices=(0, 1, 2, 3))
inputs = torch.randn((1, 3, 224, 224))
ckpt_path = os.path.join(tempfile.gettempdir(), 'ckpt.pth')
model.switch_to_deploy()
model.eval()
outputs = model(inputs)
model_deploy = RepVGG('A1', out_indices=(0, 1, 2, 3), deploy=True)
save_checkpoint(model, ckpt_path)
load_checkpoint(model_deploy, ckpt_path, strict=True)
outputs_load = model_deploy(inputs)
for feat, feat_load in zip(outputs, outputs_load):
assert torch.allclose(feat, feat_load)

View File

@ -0,0 +1,46 @@
import argparse
from pathlib import Path
import torch
from mmcls.apis import init_model
def convert_repvggblock_param(config_path, checkpoint_path, save_path):
model = init_model(config_path, checkpoint=checkpoint_path)
print('Converting...')
model.backbone.switch_to_deploy()
torch.save(model.state_dict(), save_path)
print('Done! Save at path "{}"'.format(save_path))
def main():
parser = argparse.ArgumentParser(
description='Convert the parameters of the repvgg block '
'from training mode to deployment mode.')
parser.add_argument(
'config_path',
help='The path to the configuration file of the network '
'containing the repvgg block.')
parser.add_argument(
'checkpoint_path',
help='The path to the checkpoint file corresponding to the model.')
parser.add_argument(
'save_path',
help='The path where the converted checkpoint file is stored.')
args = parser.parse_args()
save_path = Path(args.save_path)
if save_path.suffix != '.pth':
print('The path should contain the name of the pth format file.')
exit()
save_path.parent.mkdir(parents=True, exist_ok=True)
convert_repvggblock_param(args.config_path, args.checkpoint_path,
args.save_path)
if __name__ == '__main__':
main()

View File

@ -0,0 +1,59 @@
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
def convert(src, dst):
print('Converting...')
blobs = torch.load(src, map_location='cpu')
converted_state_dict = OrderedDict()
for key in blobs:
splited_key = key.split('.')
splited_key = ['norm' if i == 'bn' else i for i in splited_key]
splited_key = [
'branch_norm' if i == 'rbr_identity' else i for i in splited_key
]
splited_key = [
'branch_1x1' if i == 'rbr_1x1' else i for i in splited_key
]
splited_key = [
'branch_3x3' if i == 'rbr_dense' else i for i in splited_key
]
splited_key = [
'backbone.stem' if i[:6] == 'stage0' else i for i in splited_key
]
splited_key = [
'backbone.stage_' + i[5] if i[:5] == 'stage' else i
for i in splited_key
]
splited_key = ['se_layer' if i == 'se' else i for i in splited_key]
splited_key = ['conv1.conv' if i == 'down' else i for i in splited_key]
splited_key = ['conv2.conv' if i == 'up' else i for i in splited_key]
splited_key = ['head.fc' if i == 'linear' else i for i in splited_key]
new_key = '.'.join(splited_key)
converted_state_dict[new_key] = blobs[key]
torch.save(converted_state_dict, dst)
print('Done!')
def main():
parser = argparse.ArgumentParser(description='Convert model keys')
parser.add_argument('src', help='src detectron model path')
parser.add_argument('dst', help='save path')
args = parser.parse_args()
dst = Path(args.dst)
if dst.suffix != '.pth':
print('The path should contain the name of the pth format file.')
exit()
dst.parent.mkdir(parents=True, exist_ok=True)
convert(args.src, args.dst)
if __name__ == '__main__':
main()