pre-commit check
parent
b6117a4c18
commit
92a87a8848
|
@ -4,7 +4,7 @@ from mmcv.transforms import (LoadImageFromFile, RandomApply, RandomFlip,
|
|||
RandomGrayscale)
|
||||
from mmengine.dataset import DefaultSampler, default_collate
|
||||
|
||||
from mmpretrain.datasets import (ImageNet, ColorJitter, GaussianBlur, ImageNet,
|
||||
from mmpretrain.datasets import (ColorJitter, GaussianBlur, ImageNet,
|
||||
MultiView, PackInputs, RandomResizedCrop)
|
||||
from mmpretrain.models import SelfSupDataPreprocessor
|
||||
|
||||
|
|
|
@ -1,13 +1,11 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmcv.transforms import LoadImageFromFile, RandomFlip
|
||||
from mmengine.dataset import DefaultSampler
|
||||
|
||||
from mmcv.transforms import (LoadImageFromFile, RandomFlip)
|
||||
|
||||
from mmpretrain.datasets import (ImageNet, CenterCrop, LoadImageFromFile,
|
||||
from mmpretrain.datasets import (CenterCrop, ImageNet, LoadImageFromFile,
|
||||
PackInputs, RandomFlip, RandomResizedCrop,
|
||||
ResizeEdge)
|
||||
|
||||
from mmpretrain.evaluation import Accuracy
|
||||
|
||||
# dataset settings
|
||||
|
@ -60,4 +58,4 @@ val_evaluator = dict(type=Accuracy, topk=(1, 5))
|
|||
|
||||
# If you want standard test, please manually configure the test dataset
|
||||
test_dataloader = val_dataloader
|
||||
test_evaluator = val_evaluator
|
||||
test_evaluator = val_evaluator
|
||||
|
|
|
@ -1,17 +1,14 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmcv.transforms import LoadImageFromFile
|
||||
from mmengine.dataset import DefaultSampler
|
||||
|
||||
from mmcv.transforms import LoadImageFromFile
|
||||
|
||||
from mmpretrain.datasets import (ImageNet, CenterCrop, LoadImageFromFile,
|
||||
from mmpretrain.datasets import (CenterCrop, ImageNet, LoadImageFromFile,
|
||||
PackInputs, RandomFlip, RandomResizedCrop,
|
||||
ResizeEdge)
|
||||
|
||||
from mmpretrain.datasets.transforms import AutoAugment
|
||||
from mmpretrain.evaluation import Accuracy
|
||||
|
||||
|
||||
# dataset settings
|
||||
dataset_type = ImageNet
|
||||
data_preprocessor = dict(
|
||||
|
@ -79,4 +76,4 @@ val_evaluator = dict(type=Accuracy, topk=(1, 5))
|
|||
|
||||
# If you want standard test, please manually configure the test dataset
|
||||
test_dataloader = val_dataloader
|
||||
test_evaluator = val_evaluator
|
||||
test_evaluator = val_evaluator
|
||||
|
|
|
@ -1,9 +1,10 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmengine.dataset import DefaultSampler
|
||||
from mmpretrain.datasets import (ImageNet, LoadImageFromFile, PackInputs,
|
||||
RandomFlip, RandomResizedCrop, CenterCrop, ResizeEdge,
|
||||
RandAugment, RandomErasing)
|
||||
|
||||
from mmpretrain.datasets import (CenterCrop, ImageNet, LoadImageFromFile,
|
||||
PackInputs, RandAugment, RandomErasing,
|
||||
RandomFlip, RandomResizedCrop, ResizeEdge)
|
||||
from mmpretrain.evaluation import Accuracy
|
||||
|
||||
# dataset settings
|
||||
|
@ -85,4 +86,4 @@ val_evaluator = dict(type=Accuracy, topk=(1, 5))
|
|||
|
||||
# If you want standard test, please manually configure the test dataset
|
||||
test_dataloader = val_dataloader
|
||||
test_evaluator = val_evaluator
|
||||
test_evaluator = val_evaluator
|
||||
|
|
|
@ -1,9 +1,10 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmpretrain.models import (VisionTransformer, ImageClassifier, VisionTransformerClsHead, CrossEntropyLoss)
|
||||
|
||||
from mmengine.model.weight_init import KaimingInit
|
||||
|
||||
from mmpretrain.models import (CrossEntropyLoss, ImageClassifier,
|
||||
VisionTransformer, VisionTransformerClsHead)
|
||||
|
||||
# model settings
|
||||
model = dict(
|
||||
type=ImageClassifier,
|
||||
|
@ -27,4 +28,4 @@ model = dict(
|
|||
in_channels=1024,
|
||||
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
|
||||
topk=(1, 5),
|
||||
))
|
||||
))
|
||||
|
|
|
@ -1,8 +1,10 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmpretrain.models import (VisionTransformer, ImageClassifier, VisionTransformerClsHead, CrossEntropyLoss)
|
||||
from mmengine.model.weight_init import KaimingInit
|
||||
|
||||
from mmpretrain.models import (CrossEntropyLoss, ImageClassifier,
|
||||
VisionTransformer, VisionTransformerClsHead)
|
||||
|
||||
# model settings
|
||||
model = dict(
|
||||
type=ImageClassifier,
|
||||
|
@ -26,4 +28,4 @@ model = dict(
|
|||
in_channels=768,
|
||||
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
|
||||
topk=(1, 5),
|
||||
))
|
||||
))
|
||||
|
|
|
@ -1,8 +1,10 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmpretrain.models import (VisionTransformer, ImageClassifier, VisionTransformerClsHead, CrossEntropyLoss)
|
||||
from mmengine.model.weight_init import KaimingInit
|
||||
|
||||
from mmpretrain.models import (CrossEntropyLoss, ImageClassifier,
|
||||
VisionTransformer, VisionTransformerClsHead)
|
||||
|
||||
# model settings
|
||||
model = dict(
|
||||
type=ImageClassifier,
|
||||
|
@ -26,4 +28,4 @@ model = dict(
|
|||
in_channels=1024,
|
||||
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
|
||||
topk=(1, 5),
|
||||
))
|
||||
))
|
||||
|
|
|
@ -1,8 +1,10 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmpretrain.models import (VisionTransformer, ImageClassifier, VisionTransformerClsHead, CrossEntropyLoss)
|
||||
from mmengine.model.weight_init import KaimingInit
|
||||
|
||||
from mmpretrain.models import (CrossEntropyLoss, ImageClassifier,
|
||||
VisionTransformer, VisionTransformerClsHead)
|
||||
|
||||
# model settings
|
||||
model = dict(
|
||||
type=ImageClassifier,
|
||||
|
@ -26,4 +28,4 @@ model = dict(
|
|||
in_channels=1024,
|
||||
loss=dict(type=CrossEntropyLoss, loss_weight=1.0),
|
||||
topk=(1, 5),
|
||||
))
|
||||
))
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmengine.optim import CosineAnnealingLR, LinearLR
|
||||
|
||||
from torch.optim import AdamW
|
||||
|
||||
# optimizer
|
||||
|
@ -42,4 +41,4 @@ test_cfg = dict()
|
|||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# based on the actual training batch size.
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
|
|
|
@ -1,17 +1,17 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmengine.config import read_base
|
||||
from mmpretrain.models import Mixup, CutMix
|
||||
from mmpretrain.models import (VisionTransformer, ImageClassifier, VisionTransformerClsHead, LabelSmoothLoss,
|
||||
TruncNormalInit, ConstantInit)
|
||||
from mmpretrain.engine import EMAHook
|
||||
from torch.optim import AdamW
|
||||
|
||||
from mmpretrain.engine import EMAHook
|
||||
from mmpretrain.models import (ConstantInit, CutMix, ImageClassifier,
|
||||
LabelSmoothLoss, Mixup, TruncNormalInit,
|
||||
VisionTransformer, VisionTransformerClsHead)
|
||||
|
||||
with read_base():
|
||||
from .._base_.datasets.imagenet_bs64_swin_224 import *
|
||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
|
||||
|
||||
# model settings
|
||||
model = dict(
|
||||
|
@ -27,17 +27,15 @@ model = dict(
|
|||
type=VisionTransformerClsHead,
|
||||
num_classes=1000,
|
||||
in_channels=768,
|
||||
loss=dict(
|
||||
type=LabelSmoothLoss, label_smooth_val=0.1, mode='original'),
|
||||
loss=dict(type=LabelSmoothLoss, label_smooth_val=0.1, mode='original'),
|
||||
),
|
||||
init_cfg=[
|
||||
dict(type=TruncNormalInit, layer='Linear', std=.02),
|
||||
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.),
|
||||
],
|
||||
train_cfg=dict(augments=[
|
||||
dict(type=Mixup, alpha=0.8),
|
||||
dict(type=CutMix, alpha=1.0)
|
||||
]))
|
||||
train_cfg=dict(
|
||||
augments=[dict(type=Mixup, alpha=0.8),
|
||||
dict(type=CutMix, alpha=1.0)]))
|
||||
|
||||
# dataset settings
|
||||
train_dataloader.update(batch_size=128)
|
||||
|
@ -64,4 +62,4 @@ custom_hooks = [dict(type=EMAHook, momentum=1e-4)]
|
|||
# NOTE: `auto_scale_lr` is for automatically scaling LR
|
||||
# based on the actual training batch size.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
||||
auto_scale_lr.update(base_batch_size=4096)
|
||||
|
|
|
@ -1,18 +1,19 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmcv.transforms import (CenterCrop, ImageToTensor, Normalize, Resize,
|
||||
ToTensor)
|
||||
from mmengine.config import read_base
|
||||
from mmengine.model import PretrainedInit
|
||||
from mmengine.optim import CosineAnnealingLR, LinearLR
|
||||
from mmcv.transforms import (Normalize, ImageToTensor, ToTensor, Resize, CenterCrop)
|
||||
from mmengine.runner import IterBasedRunner, CheckpointHook
|
||||
from mmengine.runner import CheckpointHook, IterBasedRunner
|
||||
from torch.optim import SGD
|
||||
|
||||
from mmpretrain.datasets import Collect
|
||||
from torch.optim import SGD
|
||||
|
||||
with read_base():
|
||||
from .._base_.datasets.imagenet_bs64_pil_resize_autoaug import *
|
||||
from .._base_.models.vit_base_p16 import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.vit_base_p16 import *
|
||||
|
||||
# specific to vit pretrain
|
||||
paramwise_cfg = dict(custom_keys={
|
||||
|
@ -121,4 +122,4 @@ runner = dict(
|
|||
|
||||
default_hooks = dict(checkpoint=dict(type=CheckpointHook, interval=1000))
|
||||
|
||||
fp16 = dict(loss_scale=256.0, velocity_accum_type='half', accum_type='half')
|
||||
fp16 = dict(loss_scale=256.0, velocity_accum_type='half', accum_type='half')
|
||||
|
|
|
@ -5,10 +5,10 @@ from mmengine.config import read_base
|
|||
from mmpretrain.models import Mixup
|
||||
|
||||
with read_base():
|
||||
from .._base_.models.vit_base_p16 import *
|
||||
from .._base_.datasets.imagenet_bs64_pil_resize_autoaug import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.vit_base_p16 import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
|
||||
# model setting
|
||||
model.update(
|
||||
|
@ -17,4 +17,4 @@ model.update(
|
|||
)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
|
|
|
@ -1,19 +1,16 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmcv.transforms import LoadImageFromFile, RandomFlip
|
||||
from mmengine.config import read_base
|
||||
|
||||
from mmcv.transforms import (LoadImageFromFile, RandomFlip)
|
||||
|
||||
from mmpretrain.datasets import (CenterCrop, LoadImageFromFile,
|
||||
PackInputs, RandomFlip, RandomResizedCrop,
|
||||
ResizeEdge)
|
||||
from mmpretrain.datasets import (CenterCrop, LoadImageFromFile, PackInputs,
|
||||
RandomFlip, RandomResizedCrop, ResizeEdge)
|
||||
|
||||
with read_base():
|
||||
from .._base_.models.vit_base_p16 import *
|
||||
from .._base_.datasets.imagenet_bs64_pil_resize import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
from .._base_.default_runtime import *
|
||||
|
||||
from .._base_.models.vit_base_p16 import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
|
||||
# model setting
|
||||
model.update(backbone=dict(img_size=384))
|
||||
|
@ -45,4 +42,4 @@ val_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
|||
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
|
|
|
@ -5,11 +5,10 @@ from mmengine.config import read_base
|
|||
from mmpretrain.models import Mixup
|
||||
|
||||
with read_base():
|
||||
from .._base_.models.vit_base_p32 import *
|
||||
from .._base_.datasets.imagenet_bs64_pil_resize_autoaug import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
from .._base_.default_runtime import *
|
||||
|
||||
from .._base_.models.vit_base_p32 import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
|
||||
# model setting
|
||||
model.update(
|
||||
|
@ -18,4 +17,4 @@ model.update(
|
|||
)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
|
|
|
@ -1,18 +1,16 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmcv.transforms import LoadImageFromFile, RandomFlip
|
||||
from mmengine.config import read_base
|
||||
|
||||
from mmcv.transforms import (LoadImageFromFile, RandomFlip)
|
||||
|
||||
from mmpretrain.datasets import (CenterCrop, LoadImageFromFile,
|
||||
PackInputs, RandomFlip, RandomResizedCrop,
|
||||
ResizeEdge)
|
||||
from mmpretrain.datasets import (CenterCrop, LoadImageFromFile, PackInputs,
|
||||
RandomFlip, RandomResizedCrop, ResizeEdge)
|
||||
|
||||
with read_base():
|
||||
from .._base_.models.vit_base_p32 import *
|
||||
from .._base_.datasets.imagenet_bs64_pil_resize import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.vit_base_p32 import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
|
||||
# model setting
|
||||
model.update(backbone=dict(img_size=384))
|
||||
|
@ -44,4 +42,4 @@ val_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
|||
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmengine.config import read_base
|
||||
|
||||
from mmpretrain.models import Mixup
|
||||
|
||||
with read_base():
|
||||
from .._base_.models.vit_large_p16 import *
|
||||
from .._base_.datasets.imagenet_bs64_pil_resize_autoaug import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
from .._base_.default_runtime import *
|
||||
|
||||
from .._base_.models.vit_large_p16 import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
|
||||
# model setting
|
||||
model.update(
|
||||
|
@ -17,4 +17,4 @@ model.update(
|
|||
)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
|
|
|
@ -1,19 +1,16 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmcv.transforms import LoadImageFromFile, RandomFlip
|
||||
from mmengine.config import read_base
|
||||
|
||||
from mmcv.transforms import (LoadImageFromFile, RandomFlip)
|
||||
|
||||
from mmpretrain.datasets import (CenterCrop, LoadImageFromFile,
|
||||
PackInputs, RandomFlip, RandomResizedCrop,
|
||||
ResizeEdge)
|
||||
from mmpretrain.datasets import (CenterCrop, LoadImageFromFile, PackInputs,
|
||||
RandomFlip, RandomResizedCrop, ResizeEdge)
|
||||
|
||||
with read_base():
|
||||
from .._base_.models.vit_large_p16 import *
|
||||
from .._base_.datasets.imagenet_bs64_pil_resize import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
from .._base_.default_runtime import *
|
||||
|
||||
from .._base_.models.vit_large_p16 import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
|
||||
# model setting
|
||||
model.update(backbone=dict(img_size=384))
|
||||
|
@ -45,4 +42,4 @@ val_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
|||
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
|
|
|
@ -1,13 +1,14 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmengine.config import read_base
|
||||
|
||||
from mmpretrain.models import Mixup
|
||||
|
||||
with read_base():
|
||||
from .._base_.models.vit_large_p32 import *
|
||||
from .._base_.datasets.imagenet_bs64_pil_resize_autoaug import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.vit_large_p32 import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
|
||||
# model setting
|
||||
model.update(
|
||||
|
@ -16,4 +17,4 @@ model.update(
|
|||
)
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
|
|
|
@ -1,16 +1,16 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# This is a BETA new format config file, and the usage may change recently.
|
||||
from mmcv.transforms import LoadImageFromFile, RandomFlip
|
||||
from mmengine.config import read_base
|
||||
from mmcv.transforms import (LoadImageFromFile, RandomFlip)
|
||||
from mmpretrain.datasets import (CenterCrop, LoadImageFromFile,
|
||||
PackInputs, RandomFlip, RandomResizedCrop,
|
||||
ResizeEdge)
|
||||
|
||||
from mmpretrain.datasets import (CenterCrop, LoadImageFromFile, PackInputs,
|
||||
RandomFlip, RandomResizedCrop, ResizeEdge)
|
||||
|
||||
with read_base():
|
||||
from .._base_.models.vit_large_p32 import *
|
||||
from .._base_.datasets.imagenet_bs64_pil_resize import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
from .._base_.default_runtime import *
|
||||
from .._base_.models.vit_large_p32 import *
|
||||
from .._base_.schedules.imagenet_bs4096_adamw import *
|
||||
|
||||
# model setting
|
||||
model.update(backbone=dict(img_size=384))
|
||||
|
@ -42,4 +42,4 @@ val_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
|||
test_dataloader.update(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# schedule setting
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
|
||||
|
|
Loading…
Reference in New Issue