[Feature] Add color pipeline (#171)

* add ColorTransform pipeline

* fix docstring

* minor change

* revised according to comments
pull/172/head
LXXXXR 2021-03-09 19:28:50 +08:00 committed by GitHub
parent c8033ece8e
commit 9614787fc4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 130 additions and 2 deletions

View File

@ -1,4 +1,4 @@
from .auto_augment import Invert, Rotate, Shear, Translate
from .auto_augment import ColorTransform, Invert, Rotate, Shear, Translate
from .compose import Compose
from .formating import (Collect, ImageToTensor, ToNumpy, ToPIL, ToTensor,
Transpose, to_tensor)
@ -10,5 +10,6 @@ __all__ = [
'Compose', 'to_tensor', 'ToTensor', 'ImageToTensor', 'ToPIL', 'ToNumpy',
'Transpose', 'Collect', 'LoadImageFromFile', 'Resize', 'CenterCrop',
'RandomFlip', 'Normalize', 'RandomCrop', 'RandomResizedCrop',
'RandomGrayscale', 'Shear', 'Translate', 'Rotate', 'Invert'
'RandomGrayscale', 'Shear', 'Translate', 'Rotate', 'Invert',
'ColorTransform'
]

View File

@ -264,6 +264,7 @@ class Rotate(object):
@PIPELINES.register_module()
class Invert(object):
"""Invert images.
Args:
prob (float): The probability for performing invert therefore should
be in range [0, 1]. Defaults to 0.5.
@ -288,3 +289,47 @@ class Invert(object):
repr_str = self.__class__.__name__
repr_str += f'(prob={self.prob})'
return repr_str
@PIPELINES.register_module()
class ColorTransform(object):
"""Adjust the color balance of images.
Args:
magnitude (int | float): The magnitude used for color transform. A
positive magnitude would enhance the color and a negative magnitude
would make the image grayer. A magnitude=0 gives the origin img.
prob (float): The probability for performing ColorTransform therefore
should be in range [0, 1]. Defaults to 0.5.
random_negative_prob (float): The probability that turns the magnitude
negative, which should be in range [0,1]. Defaults to 0.5.
"""
def __init__(self, magnitude, prob=0.5, random_negative_prob=0.5):
assert isinstance(magnitude, (int, float)), 'The magnitude type must '\
f'be int or float, but got {type(magnitude)} instead.'
assert 0 <= prob <= 1.0, 'The prob should be in range [0,1], ' \
f'got {prob} instead.'
assert 0 <= random_negative_prob <= 1.0, 'The random_negative_prob ' \
f'should be in range [0,1], got {random_negative_prob} instead.'
self.magnitude = magnitude
self.prob = prob
self.random_negative_prob = random_negative_prob
def __call__(self, results):
if np.random.rand() > self.prob:
return results
magnitude = random_negative(self.magnitude, self.random_negative_prob)
for key in results.get('img_fields', ['img']):
img = results[key]
img_color_adjusted = mmcv.adjust_color(img, alpha=1 + magnitude)
results[key] = img_color_adjusted.astype(img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(magnitude={self.magnitude}, '
repr_str += f'prob={self.prob}, '
repr_str += f'random_negative_prob={self.random_negative_prob})'
return repr_str

View File

@ -1,5 +1,6 @@
import copy
import mmcv
import numpy as np
import pytest
from mmcv.utils import build_from_cfg
@ -22,6 +23,21 @@ def construct_toy_data():
return results
def construct_toy_data_photometric():
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
dtype=np.uint8)
img = np.stack([img, img, img], axis=-1)
results = dict()
# image
results['ori_img'] = img
results['img'] = img
results['img2'] = copy.deepcopy(img)
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
results['img_fields'] = ['img', 'img2']
return results
def test_shear():
# test assertion for invalid type of magnitude
with pytest.raises(AssertionError):
@ -335,3 +351,69 @@ def test_invert():
axis=-1)
assert (results['img'] == inverted_img).all()
assert (results['img'] == results['img2']).all()
def test_color_transform():
# test assertion for invalid type of magnitude
with pytest.raises(AssertionError):
transform = dict(type='ColorTransform', magnitude=None)
build_from_cfg(transform, PIPELINES)
# test assertion for invalid value of prob
with pytest.raises(AssertionError):
transform = dict(type='ColorTransform', magnitude=0.5, prob=100)
build_from_cfg(transform, PIPELINES)
# test assertion for invalid value of random_negative_prob
with pytest.raises(AssertionError):
transform = dict(
type='ColorTransform', magnitude=0.5, random_negative_prob=100)
build_from_cfg(transform, PIPELINES)
# test case when magnitude=0, therefore no color transform
results = construct_toy_data_photometric()
transform = dict(type='ColorTransform', magnitude=0., prob=1.)
pipeline = build_from_cfg(transform, PIPELINES)
results = pipeline(results)
assert (results['img'] == results['ori_img']).all()
# test case when prob=0, therefore no color transform
results = construct_toy_data_photometric()
transform = dict(type='ColorTransform', magnitude=1., prob=0.)
pipeline = build_from_cfg(transform, PIPELINES)
results = pipeline(results)
assert (results['img'] == results['ori_img']).all()
# test case when magnitude=-1, therefore got gray img
results = construct_toy_data_photometric()
transform = dict(
type='ColorTransform', magnitude=-1., prob=1., random_negative_prob=0)
pipeline = build_from_cfg(transform, PIPELINES)
results = pipeline(results)
img_gray = mmcv.bgr2gray(results['ori_img'])
img_gray = np.stack([img_gray, img_gray, img_gray], axis=-1)
assert (results['img'] == img_gray).all()
# test case when magnitude=0.5
results = construct_toy_data_photometric()
transform = dict(
type='ColorTransform', magnitude=.5, prob=1., random_negative_prob=0)
pipeline = build_from_cfg(transform, PIPELINES)
results = pipeline(results)
img_r = np.round(
np.clip((results['ori_img'] * 0.5 + img_gray * 0.5), 0,
255)).astype(results['ori_img'].dtype)
assert (results['img'] == img_r).all()
assert (results['img'] == results['img2']).all()
# test case when magnitude=0.3, random_negative_prob=1
results = construct_toy_data_photometric()
transform = dict(
type='ColorTransform', magnitude=.3, prob=1., random_negative_prob=1.)
pipeline = build_from_cfg(transform, PIPELINES)
results = pipeline(results)
img_r = np.round(
np.clip((results['ori_img'] * 0.7 + img_gray * 0.3), 0,
255)).astype(results['ori_img'].dtype)
assert (results['img'] == img_r).all()
assert (results['img'] == results['img2']).all()